CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***  TRANSFERASE 31-MAR-06 2CJD  ***

Normal Mode Analysis for ID 220405004109145553

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 2 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity
mode 7 1.00 0.0763
mode 8 1.25 0.1185
mode 9 1.89 0.0967
mode 10 2.14 0.4560
mode 11 2.51 0.4479
mode 12 2.83 0.4752
mode 13 3.13 0.5485
mode 14 3.60 0.2081
mode 15 3.63 0.5545
mode 16 3.94 0.4438
mode 17 4.10 0.1821
mode 18 4.48 0.4529
mode 19 4.57 0.3714
mode 20 4.81 0.4491
mode 21 4.89 0.5195
mode 22 4.93 0.4731
mode 23 5.13 0.3726
mode 24 5.29 0.4351
mode 25 5.47 0.3500
mode 26 5.59 0.3489
mode 27 5.79 0.4393
mode 28 5.89 0.5228
mode 29 6.09 0.4015
mode 30 6.15 0.1308
mode 31 6.26 0.2306
mode 32 6.37 0.4837
mode 33 6.53 0.4291
mode 34 6.74 0.3960
mode 35 6.79 0.3587
mode 36 6.88 0.3375
mode 37 7.29 0.2847
mode 38 7.47 0.3809
mode 39 7.61 0.3232
mode 40 7.66 0.4130
mode 41 7.77 0.4745
mode 42 7.88 0.3619
mode 43 7.88 0.1597
mode 44 7.95 0.4146
mode 45 8.03 0.3821
mode 46 8.12 0.4976
mode 47 8.23 0.5597
mode 48 8.37 0.5794
mode 49 8.54 0.5114
mode 50 8.57 0.5545
mode 51 8.72 0.3058
mode 52 8.82 0.4815
mode 53 8.88 0.5282
mode 54 9.04 0.4799
mode 55 9.16 0.5942
mode 56 9.23 0.1866
mode 57 9.26 0.5800
mode 58 9.41 0.4280
mode 59 9.47 0.3403
mode 60 9.55 0.4294
mode 61 9.64 0.3083
mode 62 9.69 0.5740
mode 63 9.78 0.5313
mode 64 9.81 0.5836
mode 65 9.84 0.5421
mode 66 9.98 0.4019
mode 67 10.13 0.5369
mode 68 10.19 0.2458
mode 69 10.24 0.4295
mode 70 10.27 0.3267
mode 71 10.35 0.5339
mode 72 10.43 0.5896
mode 73 10.51 0.3139
mode 74 10.62 0.2717
mode 75 10.70 0.2210
mode 76 10.76 0.4782
mode 77 10.84 0.4643
mode 78 10.90 0.3906
mode 79 10.91 0.5414
mode 80 10.99 0.4946
mode 81 11.06 0.5093
mode 82 11.09 0.5044
mode 83 11.20 0.4742
mode 84 11.25 0.4711
mode 85 11.32 0.5453
mode 86 11.37 0.3687
mode 87 11.44 0.5999
mode 88 11.53 0.4642
mode 89 11.63 0.4634
mode 90 11.74 0.4725
mode 91 11.83 0.5046
mode 92 11.89 0.5605
mode 93 11.91 0.4406
mode 94 12.02 0.4166
mode 95 12.07 0.5245
mode 96 12.13 0.4189
mode 97 12.18 0.3962
mode 98 12.20 0.5701
mode 99 12.24 0.5659
mode 100 12.30 0.5901
mode 101 12.35 0.4872
mode 102 12.46 0.4502
mode 103 12.50 0.5244
mode 104 12.61 0.1692
mode 105 12.64 0.4526
mode 106 12.66 0.5597

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.