CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***  4ff6 and 4p8y  ***

Normal Mode Analysis for ID 20122618423269598

conformational change will be analysed

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 1 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

WARNING: Rotation-translation modes have a cumulative overlap of 0.3670 !!! This probably means that the second conformation was not fitted properly onto the first one.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity cumulative overlap amplitude (dq)
mode 7 1.00 0.6646 0.112 -930.8360
mode 8 1.15 0.7261 0.114 -60.2672
mode 9 1.31 0.7812 0.117 167.2675
mode 10 2.18 0.0310 0.117 -5.8342
mode 11 2.98 0.2171 0.127 -275.1432
mode 12 3.57 0.7728 0.522 1746.3920
mode 13 3.67 0.3139 0.613 -840.4247
mode 14 3.91 0.6625 0.621 -256.9010
mode 15 4.42 0.1696 0.621 -43.7508
mode 16 4.71 0.0820 0.621 -1.7753
mode 17 5.33 0.1201 0.626 -161.9792
mode 18 5.61 0.3647 0.626 43.2238
mode 19 5.89 0.2860 0.629 -168.7190
mode 20 6.41 0.3098 0.629 -48.6408
mode 21 6.76 0.4015 0.631 77.6046
mode 22 7.06 0.5458 0.631 18.8848
mode 23 7.17 0.3129 0.646 -344.6077
mode 24 7.38 0.4482 0.646 -33.6539
mode 25 7.49 0.4114 0.649 141.2283
mode 26 8.51 0.3376 0.649 -52.9082
mode 27 8.56 0.3546 0.649 -81.7557
mode 28 8.76 0.7316 0.651 -84.1139
mode 29 9.03 0.6103 0.654 179.1888
mode 30 9.23 0.6810 0.657 160.8317
mode 31 9.39 0.6492 0.664 -219.4406
mode 32 9.73 0.3612 0.667 -133.4095
mode 33 9.96 0.3896 0.669 -149.0007
mode 34 10.22 0.4193 0.679 266.4486
mode 35 10.53 0.3398 0.680 -130.8336
mode 36 10.69 0.2946 0.712 -485.5452
mode 37 11.00 0.3633 0.713 -111.9951
mode 38 11.07 0.3313 0.713 -46.8366
mode 39 11.16 0.4005 0.717 144.6193
mode 40 11.23 0.2763 0.718 109.2988
mode 41 11.35 0.4341 0.745 -452.7302
mode 42 11.70 0.5131 0.748 -171.6468
mode 43 11.87 0.2948 0.754 234.6591
mode 44 11.93 0.3839 0.768 305.8442
mode 45 12.04 0.1659 0.773 -211.4595
mode 46 12.16 0.5535 0.774 64.3238
mode 47 12.44 0.1925 0.779 -205.5342
mode 48 12.53 0.4848 0.789 -286.1577
mode 49 12.63 0.4409 0.809 -388.4891
mode 50 12.76 0.2928 0.810 77.0316
mode 51 12.84 0.2998 0.810 58.7558
mode 52 12.87 0.3063 0.814 -176.9242
mode 53 13.11 0.2600 0.829 -333.5612
mode 54 13.29 0.3932 0.829 -65.1333
mode 55 13.42 0.3461 0.843 -321.1998
mode 56 13.56 0.4127 0.847 160.7962
mode 57 13.74 0.5215 0.853 -227.2478
mode 58 13.89 0.3929 0.853 76.0428
mode 59 14.06 0.5002 0.862 -250.1205
mode 60 14.16 0.6331 0.862 15.8769
mode 61 14.26 0.5752 0.862 -5.4182
mode 62 14.33 0.5440 0.865 154.4257
mode 63 14.44 0.5167 0.865 -20.2877
mode 64 14.60 0.4699 0.865 -59.9543
mode 65 14.75 0.3066 0.865 -4.8355
mode 66 14.78 0.5010 0.865 4.1033
mode 67 14.81 0.4151 0.865 -11.0522
mode 68 15.02 0.4636 0.866 -99.6888
mode 69 15.09 0.3821 0.871 197.8088
mode 70 15.23 0.5171 0.875 -161.1227
mode 71 15.34 0.4921 0.875 60.3167
mode 72 15.43 0.5094 0.876 77.4835
mode 73 15.65 0.5094 0.878 -103.2639
mode 74 15.67 0.5575 0.883 -199.1759
mode 75 15.81 0.4569 0.888 198.7641
mode 76 15.93 0.5290 0.888 21.6422
mode 77 16.06 0.4592 0.888 10.5429
mode 78 16.10 0.3371 0.888 -25.7957
mode 79 16.32 0.4167 0.888 63.4147
mode 80 16.46 0.3418 0.888 -35.7697
mode 81 16.50 0.4696 0.894 -200.9704
mode 82 16.73 0.4178 0.894 -95.4236
mode 83 16.81 0.5992 0.899 181.0457
mode 84 16.90 0.5645 0.901 97.4020
mode 85 16.94 0.5770 0.901 -10.4895
mode 86 17.11 0.6276 0.906 -190.5911
mode 87 17.20 0.4687 0.906 -77.4019
mode 88 17.23 0.4150 0.908 79.4538
mode 89 17.33 0.4832 0.908 12.5280
mode 90 17.61 0.4783 0.911 -161.1778
mode 91 17.66 0.2894 0.911 -48.0522
mode 92 17.69 0.4517 0.913 -107.8611
mode 93 17.83 0.5682 0.913 -79.9779
mode 94 17.91 0.4871 0.913 -49.3438
mode 95 17.99 0.4042 0.918 185.7381
mode 96 18.04 0.4834 0.921 168.6465
mode 97 18.31 0.4149 0.921 43.3253
mode 98 18.40 0.4582 0.924 121.0846
mode 99 18.46 0.4229 0.924 2.8328
mode 100 18.54 0.4409 0.926 -152.3127
mode 101 18.63 0.3484 0.926 -19.4320
mode 102 18.73 0.5589 0.927 -87.5593
mode 103 18.82 0.4836 0.929 -122.0114
mode 104 18.88 0.4606 0.934 180.2989
mode 105 19.00 0.4663 0.934 32.1071
mode 106 19.05 0.4162 0.934 84.1666

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.