CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***  1yci  ***

Normal Mode Analysis for ID 210514004643109143

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 3 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity
mode 7 1.00 0.0819
mode 8 1.41 0.0707
mode 9 1.78 0.0366
mode 10 2.05 0.1940
mode 11 2.60 0.1517
mode 12 2.78 0.2889
mode 13 2.86 0.1462
mode 14 2.99 0.0707
mode 15 3.05 0.1552
mode 16 3.44 0.3137
mode 17 3.53 0.1763
mode 18 3.85 0.2010
mode 19 4.07 0.2769
mode 20 4.25 0.4276
mode 21 4.57 0.3930
mode 22 4.83 0.3973
mode 23 4.93 0.4727
mode 24 5.10 0.2191
mode 25 5.23 0.3041
mode 26 5.32 0.4157
mode 27 5.50 0.2799
mode 28 5.78 0.5741
mode 29 5.86 0.5707
mode 30 6.04 0.5138
mode 31 6.13 0.5794
mode 32 6.33 0.4469
mode 33 6.42 0.4726
mode 34 6.59 0.3002
mode 35 6.72 0.2104
mode 36 6.96 0.4055
mode 37 7.02 0.6026
mode 38 7.14 0.1853
mode 39 7.27 0.3037
mode 40 7.46 0.6066
mode 41 7.58 0.3776
mode 42 7.62 0.4149
mode 43 7.80 0.4228
mode 44 7.83 0.3064
mode 45 7.98 0.2510
mode 46 8.14 0.2918
mode 47 8.18 0.2353
mode 48 8.24 0.3146
mode 49 8.36 0.3194
mode 50 8.54 0.4332
mode 51 8.56 0.4092
mode 52 8.63 0.3090
mode 53 8.75 0.2649
mode 54 8.82 0.4248
mode 55 8.91 0.3880
mode 56 8.98 0.2617
mode 57 9.06 0.4023
mode 58 9.17 0.4290
mode 59 9.26 0.3587
mode 60 9.36 0.4960
mode 61 9.44 0.4798
mode 62 9.46 0.4022
mode 63 9.58 0.4571
mode 64 9.68 0.3012
mode 65 9.77 0.2969
mode 66 9.86 0.3044
mode 67 9.89 0.2474
mode 68 10.00 0.2365
mode 69 10.16 0.2420
mode 70 10.20 0.3216
mode 71 10.24 0.2938
mode 72 10.35 0.4124
mode 73 10.43 0.3546
mode 74 10.47 0.3477
mode 75 10.55 0.4858
mode 76 10.63 0.3716
mode 77 10.75 0.4740
mode 78 10.81 0.4683
mode 79 10.85 0.2676
mode 80 10.86 0.3979
mode 81 10.88 0.2867
mode 82 11.08 0.4419
mode 83 11.13 0.4576
mode 84 11.26 0.2953
mode 85 11.29 0.4959
mode 86 11.41 0.4050
mode 87 11.46 0.3268
mode 88 11.50 0.4956
mode 89 11.59 0.4261
mode 90 11.60 0.3721
mode 91 11.76 0.2320
mode 92 11.77 0.3662
mode 93 11.88 0.4679
mode 94 11.91 0.2422
mode 95 12.05 0.4272
mode 96 12.06 0.4744
mode 97 12.14 0.4314
mode 98 12.20 0.4305
mode 99 12.22 0.4376
mode 100 12.27 0.4694
mode 101 12.33 0.4272
mode 102 12.40 0.4138
mode 103 12.46 0.3396
mode 104 12.59 0.3053
mode 105 12.60 0.4405
mode 106 12.64 0.4081

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.