CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***  A5N2  ***

Normal Mode Analysis for ID 21040219534598228

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 5 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity
mode 7 1.00 0.0188
mode 8 1.00 0.0216
mode 9 1.00 0.0222
mode 10 1.00 0.0295
mode 11 1.00 0.0341
mode 12 1.00 0.0214
mode 13 1.00 0.0272
mode 14 1.00 0.0227
mode 15 1.00 0.0241
mode 16 1.00 0.0225
mode 17 1.00 0.0267
mode 18 1.00 0.0351
mode 19 1.00 0.0276
mode 20 1.00 0.0268
mode 21 1.00 0.0221
mode 22 1.00 0.0311
mode 23 1.00 0.0511
mode 24 1.00 0.0286
mode 25 1.00 0.0281
mode 26 1.00 0.0289
mode 27 1.00 0.0289
mode 28 1.00 0.0215
mode 29 1.00 0.0294
mode 30 1.00 0.0236
mode 31 1.00 0.0231
mode 32 1.00 0.0268
mode 33 1.00 0.0343
mode 34 1.00 0.0318
mode 35 1.00 0.0330
mode 36 1.00 0.0337
mode 37 1.00 0.0260
mode 38 1.00 0.0402
mode 39 1.00 0.0311
mode 40 1.00 0.0325
mode 41 1.00 0.0303
mode 42 1.00 0.0221
mode 43 1.00 0.0314
mode 44 1.00 0.0269
mode 45 1.00 0.0237
mode 46 1.00 0.0335
mode 47 1.00 0.0332
mode 48 1.00 0.0398
mode 49 1.00 0.0340
mode 50 1.00 0.0440
mode 51 1.00 0.0269
mode 52 1.00 0.0549
mode 53 1.00 0.0408
mode 54 1.00 0.0316
mode 55 1.00 0.0218
mode 56 1.00 0.0355
mode 57 1.00 0.0520
mode 58 1.00 0.0189
mode 59 1.00 0.0244
mode 60 1.00 0.0383
mode 61 1.00 0.0258
mode 62 1.00 0.0218
mode 63 1.00 0.0323
mode 64 1.00 0.0412
mode 65 1.00 0.0318
mode 66 1.00 0.0331
mode 67 1.00 0.0340
mode 68 1.00 0.0293
mode 69 1.00 0.0653
mode 70 1.00 0.0291
mode 71 1.00 0.0304
mode 72 1.00 0.0419
mode 73 1.00 0.0371
mode 74 1.00 0.0347
mode 75 1.00 0.0325
mode 76 1.00 0.0354
mode 77 1.00 0.0248
mode 78 1.00 0.0439
mode 79 1.00 0.0281
mode 80 1.00 0.0403
mode 81 1.00 0.0378
mode 82 1.00 0.0242
mode 83 1.00 0.0264
mode 84 1.00 0.0237
mode 85 1.00 0.0264
mode 86 1.00 0.0306
mode 87 1.00 0.0353
mode 88 1.00 0.0318
mode 89 1.00 0.0230
mode 90 1.00 0.0353
mode 91 1.00 0.0227
mode 92 1.00 0.0279
mode 93 1.00 0.0298
mode 94 1.00 0.0275
mode 95 2625.41 0.0012
mode 96 12992.62 0.0014
mode 97 18701.71 0.0013
mode 98 19834.56 0.0038
mode 99 20509.59 0.0017
mode 100 23850.53 0.0010
mode 101 23908.21 0.0017
mode 102 26672.88 0.0107
mode 103 32175.91 0.0015
mode 104 35764.03 0.0020
mode 105 36707.03 0.0026
mode 106 38642.76 0.0023

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.