
 1

The Drawbacks of model-driven

Software Evolution

by

Harry M. Sneed
ANECON GmbH, Vienna

SORING Kft, Budapest

harry.sneed@anecon.com

Abstract:
This short paper is an essay on the drawbacks of model

driven software evolution which apply equally well to

model driven software development. The idea of

automatically generating code changes from a UML

type model is equally enticing as that of automatically

generating whole components from such a model. The

drawback is that there is then nothing to test against,

since there is only one description of the system, the

model. This violates the principles of software

verification and validation, according to which

correctness can only be demonstrated by comparing

two independent descriptions of the same solution. For

this reason, the author proposes another interpretation

of model driven evolution, one in which the

requirements model serves as a basis for propagating

changes to both the code and the test, along two

independent paths. The UML type system design could

then be generated from the code and not [vice] versa

Keywords: Evolution, Change Management,

Modeling, Verification and Validation.

1. Software Systems

In respect to the concept of model driven software

evolution, one must define what kind of software is

being evolved and what kind of a model is driving the

evolution. There are many kinds of software systems

and also many kinds of models. [BELE1975]

The types of software systems range from real time

embedded systems for driving machines to distributed

information management systems serving

organizations. Software systems are of very different

types serving very different purposes. The rate and

scope of evolution also varies tremendously, depending

on the nature of the system. Embedded systems and

systems driving mechanical processes are closely

linked to the hardware. Their rate and scope of change

is restricted to the device they are driving. Business

systems are embedded within an organization. Their

change rate is determined by organizational change

which is both, frequent and significant.

Telecommunication systems are somewhere in

between, since they are to some extend dependent on

the technology and are on the other hand driven by

business requirements. Thus, depending on the system

type, evolution can vary to a great extend, both in

scope and in frequency. How much one invests in

evolution is determined by the type of system one has.

2. Software models

Models are also of a wide variety. Usually, when one

thinks of a model, one thinks of a graphic

representation along the lines of a construction plan

with entities and connecting arrows. Earlier, models

were made up of tree diagrams and flow diagrams.

Later, models consisted of entity/relationship diagrams

sequence diagrams and state transition diagrams. The

unified modeling language attempts to unify all of the

previous diagram types plus some new ones into a

common, all encompassing set of diagrams intended to

describe a software system. [DORI2003]

Diagrams or pictures are not the only way to describe a

system. One can argue that the program code is also a

description of the system, albeit a very low level one,

but it contains all of the details required to really

understand the system. Abstraction means suppressing

details, which also means losing them. Thus, a model

can only be a partial description whereas the code is

the complete description. The sum of all the program

sources - the workflow languages, the interface

description languages, the database schemas, the

header files and the classes make up a comprehensive

and complete description of the system developed.

[BOCK2003]

On the other hand, there are the specification languages

like Z, VDM and OCL which are high level

descriptions of the system to be developed. These

languages are closer to the way a user would view the

system provided he is familiar with set theory. With

them one can describe a complete solution independent

of the technical implementation. Whether the user can

understand them is another question.

Finally, there is the natural language itself, which is

also an abstract description of a proposed or existing

system. More often, requirement specifications are

formulated in some restricted form of a natural

language. The history of mankind has proven that

natural language is the preferred means of describing

situations whether or not they physically exist or only

exist in the minds of men. Since situations and minds

differ so do the natural languages. Of course, there are

 2

situations, when diagrams are more expressive than

words, in which case diagrams can be used to

supplement the words. Good descriptions of real or

imagined phenomena are more often combinations of

text and diagrams, which is how most software systems

are described. [SEID2003]

3. Top-Down and Bottom-Up

Software Evolution

The problem with software evolution is how to keep

the description of the system synchronized with the

system itself, i.e. how to synchronize the code with the

model, when the system is changing rapidly and

significantly. The implied goal of model driven

software evolution would be that the model is changed

and that the changes are automatically propagated to

the real code as depicted in Figure 1.

Evolution
Requirements

Code Generator

Source Code

UML
Model

Figure 1: Top Down Model-driven Approach

Transformation

Generation

Maintainer

Information Adaption

 This assumes some kind of automatic transformation

between the higher level description of the system and

the lower one. If a function is added to the model, then

that same function pops up somewhere in the code or

perhaps in many places in the code. The prerequisite to

really applying such an automatic transformation is

that the modeling language is closely related to the

programming language, i.e. the higher level description

of the software is not far removed from the lower one.

The further the modeling language is from the code

being modeled, the more difficult and error prone is the

transformation. [HAR2004]

The model driven approach builds on the classical top-

down approach to software development, which is in

itself a fallacy. The advocates of this approach have a

naïve belief in the ability of commercial developers to

understand what they are doing. In reality they do not

have the slightest idea. They play around with a

problem until they have found an acceptable solution.

As Balzer wrote “in actual practice development steps

are not refinements of the original specification, but

instead redefine the specification itself ... there is a

much more intertwined relationship between

specification and implementation than the standard

rhetoric would have us believe“. [BALZ1982]

This author has had the opportunity to observe

commercial developers at work for almost 40 years. He

finds it difficult to accept the hypothesis that

developers working with UML tools understand the

problems they work on any better than they did 20

years ago working with CASE tools based on

structured analysis and design. The problem then was

the human operator and it is still the problem.

Developers, especially the run of the mill programmers

working in industry, are not able to conceptualize the

solution to a complex problem no matter what

language they are using to express themselves or what

tool they are using to implement the language. As

Michael Jackson put it so blatantly “System

requirements can never be stated fully in advance, not

even in principle, because the user does not know them

in advance - not even in principle“. [JACK1982]

A contrary approach is the bottom-up one. The changes

are made to the low level description of the system, i.e.

to the code itself, and are then propagated by means of

reverse engineering techniques to the upper level

description. Thus, if an interface is added to the code,

that interface description will be updated in the model

automatically. This approach ensures that the model is

always a true description of the system itself. However,

here too, for this to work, the modeling language must

be closely related to the programming language. All of

the constructs in the programming language must have

some equivalent in the modeling language otherwise

they will be distorted, which is often the case in

translating natural languages. [SEL2003] Figure 2

depicts the bottom-up approach.

Evolution
Requirements

Reverse Engineering Tool

Source Code

UML
Model

Figure 2: Bottum-Up Model-driven Approach

Generation

Transformation

Information

Adaption

Maintainer

The biggest drawback of both, the top-down and the

bottom-up approaches to model driven software

evolution is that in both cases, there really is only one

description of the system. The other description is only

a translation of the original one in a different language.

In the case of the top-down approach, the original

description is the model. The code is merely a copy of

the model in another form. In the case of the bottom-up

approach, the code is the original description and the

model is derived from it. As such, the model is only

another, somewhat higher level description of the code,

both of which are descriptions of the real systems.

[SNED1988]

 3

The question posed here, is what is easier to change -

the graphical, higher level description, or the textual

lower level description. Theoreticians would argue that

it is easier and better, to change the diagrams or the

higher level notations. Practicing programmers would

argue that it is easier and better to change the code or

the low level notations. Both have good reasons for

their choice. After 15 years of research on automatic

programming, Rich and Waters came to the conclusion

that “to write a complete specification in a general-

purpose specification language is seldom easier and

often incredibly harder than writing a program.

Furthermore, there has been little success in developing

automatic systems that compile efficient programs

from specifications“. [RICH1988] As of now, this

author has found no reason to believe that the program

generators have become significantly better.

Theoreticians will claim that diagrams are easier to

comprehend and offer a better overview. Practitioners

will argue that the code is the most exact description of

what is going on and that it offers a more detailed

view. Besides, the practitioner will argue that he really

does not know what will happen when he invokes a

change, so he must first try out many variations until

he finds the right one. This goes much faster in the

code itself. Being a practitioner, this author tends to

share the programmer‘s view. In most cases it is that

last 10% which makes the difference. [MATH1986]

The top-down approach assumes that the system

maintainers know what they are doing, that they are

able to project the affects of their model changes on the

underlying code. This authors knows that they don‘t.

Maintenance programmers are by nature hackers.

When they have a change to make they experiment

with different variants of that change until they have

found one that fits. Consequently, software evolution at

the lowest level is a trial and error process, which is

often repeated many times before the right solution is

found. For this reason, it is open to debate which

approach is really better. It may depend on the system

type and the knowledge of the maintainer.

[GLAS2004]

4. The need for a dual approach

However, this is not the point here. The point is that

both approaches are based on a single description of

the software system, since the other description is only

a translation. That fact is what makes both model

driven development and model driven evolution

unacceptable for verification and validation. To verify

a system, i.e. to prove that a system is true, one needs

at least two descriptions of that system, which are

independent of one another. Testing implies

comparing. A system is tested by testing the actual

behavior with the specified behavior. [DEMI1979] If

the code is actually derived from the specification, then

the code is only that same specification in another

notation. The test of the system is then in fact only a

test of the transformation process. To assure the quality

of a system it is necessary to follow a dual approach as

depicted in Figure 3.

Evolution
Requirements

Figure 3: Dual Approach

Maintainer Tester

Test Generator

Test Procedures

Test Specification

Code Generator

Source Code

Code Specification
UML

Test

Verification
Code = TestSpec

In testing a system, the test cases and test data must be

derived from another description of the system, other

than that from which the code is derived. That means

that there should be two independent descriptions of

the final solution, preferably in two different

languages. The one should be in the language of the

developers, the other in the language of the users and

that is their natural language. [FETZ1988]

5. Using the requirements as a model

The developers may choose between using a

programming language or a modeling language or they

may use both. In either case, the users will have their

own languages which will be some form of natural

language. For processing as well as for documenting

the requirements, it will be necessary to put the natural

language into some kind of regular form. This could be

a combination of texts, tables and diagrams. The

requirements themselves should be listed out as a series

of numbered texts. This list of requirements should be

enhanced by a set of tables including

• a table of user interfaces

• a table of system interfaces

• a table of business objects

• a table of business rules

• a table of business processes

• a table of system actors

• a table of system resources and

• a table of use cases. [ROB1999]

The use cases should be described with their attributes

in separate tables enhanced by a use case diagram.

In all of the tables the texts should be written out as full

sentences or as proper names. The same applies to the

requirements. Every requirement should be a paragraph

with two or more full sentences. In the use case

descriptions, the steps of the main and the alternate

paths should be listed out together with the pre- and

post conditions, the triggers, the actors, the rules, the

inputs and outputs and the exceptions. The business

rules should be explicitly stated as logical conditions or

arithmetic expressions. The objects should be

described with their attributes. [ERIK2000]

 4

All of this information can be contained in a single

comprehensive document or it can be distributed

among many separate documents. The important thing

is that the documents are both readable for the user and

readable for a program. The user must be able to check

if the document really reflects what he wants. Since

users normally understand their own natural language

that means what they want has to be described in

natural language. The program must be able to extract

test cases from the text to check the text for

consistency and adherence to rules, to derive metrics

for making cost estimations and for providing the

design of a requirement based system test. Programs

can only work on regular grammars. Therefore the

requirement specification must fulfill both

prerequisites. If it can do this, the requirements

specification can serve as a basis for both the test and

the development. [LAMS1998]

Using the same set of requirements documents as a

base line or, as the test pioneer Howden once put it, as

an oracle, the developers will produce either a higher

level or a lower level description of the system while

the testers produce another description of the same

system in the form of test cases and test data. In this

way, two separate interpretations of the requirements

will be made, one from the viewpoint of developers

and another from the view point of the testers. At the

end, these two independent interpretations will be

compared against one another to determine the

correctness of the system. [HOWD1987]

6. Requirements driven software

evolution

So where does that leave us, as far as evolution is

concerned? It leaves us with the necessity of

maintaining and evolving two separate descriptions of

the software being evolved - one in a normalized

natural language and one in a graphic or programming

language. It is absurd to believe that a graphic or

modeling language description will ever be able to

replace the natural language one. For that, we would

need to replace our users by software technicians. This

applies to other fields as well. Few house builders are

able to understand the construction plans created by the

architect, but they still can visualize what they want

and express it with pictures and natural language.

Therefore, in software evolution, there is no real need

of a modeling language like UML. If the maintenance

personnel would like to have an overview of their code

in graphical form, they can use a reverse engineering

tool to have it on demand. For sure, the users,

managers and testers will never ask for it. They will

stick to their natural language description. The

maintainers are usually best served by a software

repository and a flexible query facility which provides

them with information on demand. No study on

software maintenance has ever proved that UML

diagrams contribute to reducing maintenance costs. So

why maintain them? [MUNS2005]

In the end, model driven software evolution will boil

down to a requirements-driven software evolution. It

will be absolutely essential to evolve the requirements

documents and not the UML. UML is not a

requirements language and never was intended to be. It

is a language for software technicians and not for users.

It may help to improve the communication between

developers, but aside from the use cases, it does not

help in promoting communication with end users. For

that there is no substitute for well structured natural

language. The requirement-driven model is depicted in

Figure 4.

Evolution
Requirements

Figure 4: Requirements-driven Approach

Maintainer Tester

Reverse Engineering Tool

Source Code
Verification

Test Procedures

Repository

Generation

Transformation Transformation

Generation

Adaption Adaption

Information

In the requirement model three descriptions of the

system exist – the requirements document, the source

code and the test procedures. For every change or

enhancement, both the source code and the test

procedures must be adapted. It is important that this is

done by two different persons with two different

perspectives – the programmer and the tester. On the

side of the code, the programmer will have to map the

requirement changes onto the source code. On the side

of the test, old test cases will have to be altered and

new test cases will have to be generated. Both the

programmer and the tester will require information on

the impact of their changes. For this purpose, there

should be an invisible model of the software system

contained in a software repository. This repository

should be populated via source code analysis as well as

by requirement analysis and test case analysis. In this

way, any requirement change can be linked directly to

the code units affected.

In software maintenance and evolution the testers are

the representatives of the users. Thus there are two

groups working along side each other – the

maintenance team and the test team. Both can get any

information they want about the system on demand

through a query facility. Their questions should be

answered directly without forcing them to ponder

through a series of UML diagrams. They will then be

able to see what the impact domain of the new or

changed requirement is, but nothing will be updated

automatically since this would violate the principle of

comparing two independent solutions.

 5

The maintainer will have to alter or enhance the code

manually, based on his interpretation of the change

request. The tester will alter existing test cases or

create new ones, based on his own particular

interpretation of the requirement. In this way, the

duality is preserved. The costs may be higher, but that

is the price of quality. To have only a single

description of a system which satisfies both the testers

and the developers is not only an illusion, but also a

gross violation of the verification principle. The goal

should be to maintain two independent descriptions in

two different languages. The price is that of preserving

separate user/tester and developer views of an evolving

system.

7. Conclusion
In light of the need to preserve software correctness,

model driven software evolution should never come to

mean generating code changes from UML type models.

It should at best mean maintaining the user

requirements model and propagating changes in it to

both the source code and the testware by two different

routes, either by two different tools or by two different

persons, working parallel to one another. The software

engineering community is called upon to stop this

mania of reducing the time and cost of software

maintenance and development at any price. Quality and

long range stability must have precedence over

quantity and short range benefits which soon turn to

long term liabilities.

8. References

[BELE1975] Belady, L. /Lehman, M.: „The Evolution

Dynamics of Large Programs“, IBM Systems Journal,

Nr. 3, Sept. 1975, p. 11

[DORI2003] Dori, D.: “Conceptual Modelling and

System Architecting”, Comm. Of ACM, Vol. 46, Nr.

10, Oct. 2003, p. 63

[BOCK2003] Bock, C.: “UML without Pictures”,

IEEE Software, Sept. 2003, p. 33

[SEID2003] Seidewitz, E.: “What Models mean”,

IEEE Software, Sept. 2003, p. 26

[HAR2004] Harel, D./Rumpe, B.: ”Meaningful

Modelling – The Semantics of Semantics”, IEEE

Computer, Oct. 2004, p. 64

[BALZ1982] Balzer, R./Swartout, V.: “On the

inevitable intertwining of Specification and

Implementation”, Comm. Of ACM, Vol. 25, No. 7,

July, 1982, p. 27

[JACK1982] Jackson, M./McCracken, D.: “Life cycle

Model considered harmful”, SE-Notes, Vol. 7, No. 1,

April 1982, p. 11

[SEL2003] Selic, B.: “The Pragmatics of Model-

Driven Development”, IEEE Software, Sept. 2003, p.

19

[SNED1989] Sneed,H.: “The Myth of Top-Down

Development and its Consequences for Software

Maintenance”, Proc. Of 5th ICSM, IEEE Computer

Society Press, Miami, Nov. 1989, p.

[RICH1988] Rich, C./ Waters, R.: “The Programmer’s

Apprentice”, IEEE Computer, Nov., 1988, p.15

[MATH1986] “The last 10%”, IEEE Trans. On S.E.,

Vol. 12, No. 6, June, 1986, p 572

[GLAS2004] Glass, R.: “Learning to distinguish a

Solution from a Problem”, IEEE Software, May, 2004,

p. 111

[DEMI1979] Demilo / Lipton / Perlis: “Social

Processes and Proofs of Theorems and Programs”,

Comm. Of ACM, Vol. 22, No. 5, May, 1979

[FETZ1988] Fetzer, J.: “Program Verification – The

very Idea”, Comm. Of ACM, Vol. 31, No. 9, Sept.

1988

[ROB1999] Robertson, S./Robertson, J.: Mastering the

Requirements Process, Addison-Wesley, London, 1999

[ERIK2000] Erikson, H-E./Penker, M.: Business

Modeling with UML, OMG Press, John Wiley & Sons,

New York, 2000

[LAMS1998] Lamsweerde, A. / Willemet, L.: “

Inferring Declarative Requirements Specifications

from Operational Scenarios”, IEEE Trans. on S.E.,

Vol. 24, No. 12, Dec. 1998, s. 1089

[HOWD1987] Howden, W.: Functional Program

Testing and Analysis, McGraw-Hill, New York, 1987

[MUNS2005] Munson, J. / Nikora, A.: „“An Approach

to the measurement of Software Evolution“, Journal of

Software Maintenance and Evolution, Vol. 17, No. 1,

Jan. 2005, p. 65

