The Drawbacks of model-driven
Software Evolution

Harry M. Sneed
ANECON GmbH, Vienna
SORING Kft, Budapest
harry.sneed@anecon.com

Abstract:

This short paper is an essay on the drawbacks of model
driven software evolution which apply equally well to
model driven software development. The idea of
automatically generating code changes from a UML
type model is equally enticing as that of automatically
generating whole components from such a model. The
drawback is that there is then nothing to test against,
since there is only one description of the system, the
model. This violates the principles of software
verification and validation, according to which
correctness can only be demonstrated by comparing
two independent descriptions of the same solution. For
this reason, the author proposes another interpretation
of model driven evolution, one in which the
requirements model serves as a basis for propagating
changes to both the code and the test, along two
independent paths. The UML type system design could
then be generated from the code and not [vice] versa
Keywords: Evolution, Change Management,
Modeling, Verification and Validation.

1. Software Systems

In respect to the concept of model driven software
evolution, one must define what kind of software is
being evolved and what kind of a model is driving the
evolution. There are many kinds of software systems
and also many kinds of models. [BELE1975]

The types of software systems range from real time
embedded systems for driving machines to distributed
information management systems serving
organizations. Software systems are of very different
types serving very different purposes. The rate and
scope of evolution also varies tremendously, depending
on the nature of the system. Embedded systems and
systems driving mechanical processes are closely
linked to the hardware. Their rate and scope of change
is restricted to the device they are driving. Business
systems are embedded within an organization. Their
change rate is determined by organizational change
which is both, frequent and significant.

Telecommunication systems are somewhere in
between, since they are to some extend dependent on
the technology and are on the other hand driven by
business requirements. Thus, depending on the system
type, evolution can vary to a great extend, both in

scope and in frequency. How much one invests in
evolution is determined by the type of system one has.

2. Software models

Models are also of a wide variety. Usually, when one
thinks of a model, one thinks of a graphic
representation along the lines of a construction plan
with entities and connecting arrows. Earlier, models
were made up of tree diagrams and flow diagrams.
Later, models consisted of entity/relationship diagrams
sequence diagrams and state transition diagrams. The
unified modeling language attempts to unify all of the
previous diagram types plus some new ones into a
common, all encompassing set of diagrams intended to
describe a software system. [DORI2003]

Diagrams or pictures are not the only way to describe a
system. One can argue that the program code is also a
description of the system, albeit a very low level one,
but it contains all of the details required to really
understand the system. Abstraction means suppressing
details, which also means losing them. Thus, a model
can only be a partial description whereas the code is
the complete description. The sum of all the program
sources - the workflow languages, the interface
description languages, the database schemas, the
header files and the classes make up a comprehensive
and complete description of the system developed.
[BOCK2003]

On the other hand, there are the specification languages
like Z, VDM and OCL which are high level
descriptions of the system to be developed. These
languages are closer to the way a user would view the
system provided he is familiar with set theory. With
them one can describe a complete solution independent
of the technical implementation. Whether the user can
understand them is another question.

Finally, there is the natural language itself, which is
also an abstract description of a proposed or existing
system. More often, requirement specifications are
formulated in some restricted form of a natural
language. The history of mankind has proven that
natural language is the preferred means of describing
situations whether or not they physically exist or only
exist in the minds of men. Since situations and minds
differ so do the natural languages. Of course, there are

1

situations, when diagrams are more expressive than
words, in which case diagrams can be used to
supplement the words. Good descriptions of real or
imagined phenomena are more often combinations of
text and diagrams, which is how most software systems
are described. [SEID2003]

3. Top-Down and Bottom-Up
Software Evolution

The problem with software evolution is how to keep
the description of the system synchronized with the
system itself, i.e. how to synchronize the code with the
model, when the system is changing rapidly and
significantly. The implied goal of model driven
software evolution would be that the model is changed
and that the changes are automatically propagated to
the real code as depicted in Figure 1.

Evolution
Requirements

l Maintainer
2

uMmL

Adaption

Transformation

‘ Code Generator

l l l Generation

[Source Code }

Figure 1: Top Down Model-driven Approach

This assumes some kind of automatic transformation
between the higher level description of the system and
the lower one. If a function is added to the model, then
that same function pops up somewhere in the code or
perhaps in many places in the code. The prerequisite to
really applying such an automatic transformation is
that the modeling language is closely related to the
programming language, i.e. the higher level description
of the software is not far removed from the lower one.
The further the modeling language is from the code
being modeled, the more difficult and error prone is the
transformation. [HAR2004]

The model driven approach builds on the classical top-
down approach to software development, which is in
itself a fallacy. The advocates of this approach have a
naive belief in the ability of commercial developers to
understand what they are doing. In reality they do not
have the slightest idea. They play around with a
problem until they have found an acceptable solution.
As Balzer wrote “in actual practice development steps
are not refinements of the original specification, but
instead redefine the specification itself ... there is a
much more intertwined relationship between
specification and implementation than the standard
rhetoric would have us believe®. [BALZ1982]

This author has had the opportunity to observe
commercial developers at work for almost 40 years. He
finds it difficult to accept the hypothesis that
developers working with UML tools understand the
problems they work on any better than they did 20
years ago working with CASE tools based on
structured analysis and design. The problem then was
the human operator and it is still the problem.
Developers, especially the run of the mill programmers
working in industry, are not able to conceptualize the
solution to a complex problem no matter what
language they are using to express themselves or what
tool they are using to implement the language. As
Michael Jackson put it so blatantly “System
requirements can never be stated fully in advance, not
even in principle, because the user does not know them
in advance - not even in principle”. [JACK1982]

A contrary approach is the bottom-up one. The changes
are made to the low level description of the system, i.e.
to the code itself, and are then propagated by means of
reverse engineering techniques to the upper level
description. Thus, if an interface is added to the code,
that interface description will be updated in the model
automatically. This approach ensures that the model is
always a true description of the system itself. However,
here too, for this to work, the modeling language must
be closely related to the programming language. All of
the constructs in the programming language must have
some equivalent in the modeling language otherwise
they will be distorted, which is often the case in
translating natural languages. [SEL2003] Figure 2
depicts the bottom-up approach.

Evolution
Requirements

Maintainer

Adaption

Information

I I I Generation

‘ Reverse Engineering Tool

I I T Transformation

4[Source Code }

Figure 2: Bottum-Up Model-driven Approach
The biggest drawback of both, the top-down and the
bottom-up approaches to model driven software
evolution is that in both cases, there really is only one
description of the system. The other description is only
a translation of the original one in a different language.
In the case of the top-down approach, the original
description is the model. The code is merely a copy of
the model in another form. In the case of the bottom-up
approach, the code is the original description and the
model is derived from it. As such, the model is only
another, somewhat higher level description of the code,
both of which are descriptions of the real systems.
[SNED1988]

The question posed here, is what is easier to change -
the graphical, higher level description, or the textual
lower level description. Theoreticians would argue that
it is easier and better, to change the diagrams or the
higher level notations. Practicing programmers would
argue that it is easier and better to change the code or
the low level notations. Both have good reasons for
their choice. After 15 years of research on automatic
programming, Rich and Waters came to the conclusion
that “to write a complete specification in a general-
purpose specification language is seldom easier and
often incredibly harder than writing a program.
Furthermore, there has been little success in developing
automatic systems that compile efficient programs
from specifications®. [RICH1988] As of now, this
author has found no reason to believe that the program
generators have become significantly better.

Theoreticians will claim that diagrams are easier to
comprehend and offer a better overview. Practitioners
will argue that the code is the most exact description of
what is going on and that it offers a more detailed
view. Besides, the practitioner will argue that he really
does not know what will happen when he invokes a
change, so he must first try out many variations until
he finds the right one. This goes much faster in the
code itself. Being a practitioner, this author tends to
share the programmer‘s view. In most cases it is that
last 10% which makes the difference. [MATH1986]

The top-down approach assumes that the system
maintainers know what they are doing, that they are
able to project the affects of their model changes on the
underlying code. This authors knows that they don‘t.
Maintenance programmers are by nature hackers.
When they have a change to make they experiment
with different variants of that change until they have
found one that fits. Consequently, software evolution at
the lowest level is a trial and error process, which is
often repeated many times before the right solution is
found. For this reason, it is open to debate which
approach is really better. It may depend on the system
type and the knowledge of the maintainer.
[GLAS2004]

4. The need for a dual approach

However, this is not the point here. The point is that
both approaches are based on a single description of
the software system, since the other description is only
a translation. That fact is what makes both model
driven development and model driven evolution
unacceptable for verification and validation. To verify
a system, i.e. to prove that a system is true, one needs
at least two descriptions of that system, which are
independent of one another. Testing implies
comparing. A system is tested by testing the actual
behavior with the specified behavior. [DEMI1979] If
the code is actually derived from the specification, then
the code is only that same specification in another
notation. The test of the system is then in fact only a
test of the transformation process. To assure the quality

of a system it is necessary to follow a dual approach as
depicted in Figure 3.

Evolution
/‘ Requirements \
Maintainer Tester

!

Code

Test n

Code Generator Test Generator
(e
Figure 3: Dual Approach

In testing a system, the test cases and test data must be
derived from another description of the system, other
than that from which the code is derived. That means
that there should be two independent descriptions of
the final solution, preferably in two different
languages. The one should be in the language of the
developers, the other in the language of the users and
that is their natural language. [FETZ1988]

UL Verification

Code = TestSpec

5. Using the requirements as a model

The developers may choose between using a
programming language or a modeling language or they
may use both. In either case, the users will have their
own languages which will be some form of natural
language. For processing as well as for documenting
the requirements, it will be necessary to put the natural
language into some kind of regular form. This could be
a combination of texts, tables and diagrams. The
requirements themselves should be listed out as a series
of numbered texts. This list of requirements should be
enhanced by a set of tables including

* atable of user interfaces

* atable of system interfaces

e atable of business objects

* atable of business rules

* atable of business processes

e atable of system actors

* atable of system resources and

e atable of use cases. [ROB1999]

The use cases should be described with their attributes
in separate tables enhanced by a use case diagram.

In all of the tables the texts should be written out as full
sentences or as proper names. The same applies to the
requirements. Every requirement should be a paragraph
with two or more full sentences. In the use case
descriptions, the steps of the main and the alternate
paths should be listed out together with the pre- and
post conditions, the triggers, the actors, the rules, the
inputs and outputs and the exceptions. The business
rules should be explicitly stated as logical conditions or
arithmetic expressions. The objects should be
described with their attributes. [ERIK2000]

All of this information can be contained in a single
comprehensive document or it can be distributed
among many separate documents. The important thing
is that the documents are both readable for the user and
readable for a program. The user must be able to check
if the document really reflects what he wants. Since
users normally understand their own natural language
that means what they want has to be described in
natural language. The program must be able to extract
test cases from the text to check the text for
consistency and adherence to rules, to derive metrics
for making cost estimations and for providing the
design of a requirement based system test. Programs
can only work on regular grammars. Therefore the
requirement specification must fulfill both
prerequisites. If it can do this, the requirements
specification can serve as a basis for both the test and
the development. [LAMS1998]

Using the same set of requirements documents as a
base line or, as the test pioneer Howden once put it, as
an oracle, the developers will produce either a higher
level or a lower level description of the system while
the testers produce another description of the same
system in the form of test cases and test data. In this
way, two separate interpretations of the requirements
will be made, one from the viewpoint of developers
and another from the view point of the testers. At the
end, these two independent interpretations will be
compared against one another to determine the
correctness of the system. [HOWD1987]

6. Requirements driven software
evolution

So where does that leave us, as far as evolution is
concerned? It leaves us with the necessity of
maintaining and evolving two separate descriptions of
the software being evolved - one in a normalized
natural language and one in a graphic or programming
language. It is absurd to believe that a graphic or
modeling language description will ever be able to
replace the natural language one. For that, we would
need to replace our users by software technicians. This
applies to other fields as well. Few house builders are
able to understand the construction plans created by the
architect, but they still can visualize what they want
and express it with pictures and natural language.

Therefore, in software evolution, there is no real need
of a modeling language like UML. If the maintenance
personnel would like to have an overview of their code
in graphical form, they can use a reverse engineering
tool to have it on demand. For sure, the users,
managers and testers will never ask for it. They will
stick to their natural language description. The
maintainers are usually best served by a software
repository and a flexible query facility which provides
them with information on demand. No study on
software maintenance has ever proved that UML

diagrams contribute to reducing maintenance costs. So
why maintain them? [MUNS2005]

In the end, model driven software evolution will boil
down to a requirements-driven software evolution. It
will be absolutely essential to evolve the requirements
documents and not the UML. UML is not a
requirements language and never was intended to be. It
is a language for software technicians and not for users.
It may help to improve the communication between
developers, but aside from the use cases, it does not
help in promoting communication with end users. For
that there is no substitute for well structured natural
language. The requirement-driven model is depicted in

Figure 4.
iformation @

Adaption
S T —
Verification

Evolution
Requirements

Test Procedures.
Transformation

Transformation

‘ Reverse Engineering Tool ‘

Repository

Figure 4: Requirements-driven Approach

In the requirement model three descriptions of the
system exist — the requirements document, the source
code and the test procedures. For every change or
enhancement, both the source code and the test
procedures must be adapted. It is important that this is
done by two different persons with two different
perspectives — the programmer and the tester. On the
side of the code, the programmer will have to map the
requirement changes onto the source code. On the side
of the test, old test cases will have to be altered and
new test cases will have to be generated. Both the
programmer and the tester will require information on
the impact of their changes. For this purpose, there
should be an invisible model of the software system
contained in a software repository. This repository
should be populated via source code analysis as well as
by requirement analysis and test case analysis. In this
way, any requirement change can be linked directly to
the code units affected.

Generation Generation

In software maintenance and evolution the testers are
the representatives of the users. Thus there are two
groups working along side each other — the
maintenance team and the test team. Both can get any
information they want about the system on demand
through a query facility. Their questions should be
answered directly without forcing them to ponder
through a series of UML diagrams. They will then be
able to see what the impact domain of the new or
changed requirement is, but nothing will be updated
automatically since this would violate the principle of
comparing two independent solutions.

The maintainer will have to alter or enhance the code
manually, based on his interpretation of the change
request. The tester will alter existing test cases or
create new ones, based on his own particular
interpretation of the requirement. In this way, the
duality is preserved. The costs may be higher, but that
is the price of quality. To have only a single
description of a system which satisfies both the testers
and the developers is not only an illusion, but also a
gross violation of the verification principle. The goal
should be to maintain two independent descriptions in
two different languages. The price is that of preserving
separate user/tester and developer views of an evolving
system.

7. Conclusion

In light of the need to preserve software correctness,
model driven software evolution should never come to
mean generating code changes from UML type models.
It should at best mean maintaining the user
requirements model and propagating changes in it to
both the source code and the testware by two different
routes, either by two different tools or by two different
persons, working parallel to one another. The software
engineering community is called upon to stop this
mania of reducing the time and cost of software
maintenance and development at any price. Quality and
long range stability must have precedence over
quantity and short range benefits which soon turn to
long term liabilities.

8. References

[BELE1975] Belady, L. /Lehman, M.: ,,The Evolution
Dynamics of Large Programs®, IBM Systems Journal,
Nr. 3, Sept. 1975, p. 11

[DORI2003] Dori, D.: “Conceptual Modelling and
System Architecting”, Comm. Of ACM, Vol. 46, Nr.
10, Oct. 2003, p. 63

[BOCK2003] Bock, C.: “UML without Pictures”,
IEEE Software, Sept. 2003, p. 33

[SEID2003] Seidewitz, E.: “What Models mean”,
IEEE Software, Sept. 2003, p. 26

[HAR2004] Harel, D./Rumpe, B.: ”“Meaningful
Modelling — The Semantics of Semantics”, IEEE
Computer, Oct. 2004, p. 64

[BALZ1982] Balzer, R./Swartout, V.. “On the
inevitable intertwining of Specification and
Implementation”, Comm. Of ACM, Vol. 25, No. 7,
July, 1982, p. 27

[JACK1982] Jackson, M./McCracken, D.: “Life cycle
Model considered harmful”, SE-Notes, Vol. 7, No. 1,
April 1982, p. 11

[SEL2003] Selic, B.: “The Pragmatics of Model-
Driven Development”, IEEE Software, Sept. 2003, p.
19

[SNED1989] Sneed,H.: “The Myth of Top-Down
Development and its Consequences for Software
Maintenance”, Proc. Of 5™ ICSM, IEEE Computer
Society Press, Miami, Nov. 1989, p.

[RICH1988] Rich, C./ Waters, R.: “The Programmer’s
Apprentice”, [IEEE Computer, Nov., 1988, p.15

[MATH1986] “The last 10%”, IEEE Trans. On S.E.,
Vol. 12, No. 6, June, 1986, p 572

[GLAS2004] Glass, R.: “Learning to distinguish a
Solution from a Problem”, IEEE Software, May, 2004,
p. 111

[DEMI1979] Demilo / Lipton / Perlis: “Social
Processes and Proofs of Theorems and Programs”,
Comm. Of ACM, Vol. 22, No. 5, May, 1979
[FETZ1988] Fetzer, J.: “Program Verification — The
very Idea”, Comm. Of ACM, Vol. 31, No. 9, Sept.
1988

[ROB1999] Robertson, S./Robertson, J.: Mastering the
Requirements Process, Addison-Wesley, London, 1999
[ERIK2000] Erikson, H-E./Penker, M.: Business
Modeling with UML, OMG Press, John Wiley & Sons,
New York, 2000

[LAMS1998] Lamsweerde, A. / Willemet, L.: “
Inferring Declarative Requirements Specifications
from Operational Scenarios”, IEEE Trans. on S.E.,
Vol. 24, No. 12, Dec. 1998, s. 1089

[HOWD1987] Howden, W.: Functional Program
Testing and Analysis, McGraw-Hill, New York, 1987
[MUNS2005] Munson, J. / Nikora, A.: ,,An Approach
to the measurement of Software Evolution®, Journal of
Software Maintenance and Evolution, Vol. 17, No. 1,
Jan. 2005, p. 65

