Evaluation of Maintainability of Model-driven Persistency Techniques

Thomas Goldschmidt
Software Engineering

FZI Forschungszentrum Informatik

Karlsruhe, Germany
goldschmidt@fzi.de

Jochen Winzen
andrena objects ag
Karlsruhe, Germany
jochen.winzen@andrena.de

Ralf Reussner
Institute for Programming Structures and Data Organisation
Universitat Karlsruhe (TH)
Karlsruhe, Germany
reussner@ipd.uka.de

Abstract

Although the original OMG Model-Driven Architecture
Approach is not concerned with software evolution, model-
driven techniques may be good candidates to ease software
evolution. However, a systematic evaluation of the bene-
fits and drawback of model-driven approaches compared to
other approachesarelacking. Besides maintainability other
quality attributes of the software are of interest, in partic-
ular performance metrics. One specific area where model
driven approaches are established in the area of software
evolution are the generation of adapters to persist modern
object oriented business models with legacy software and
databases. This paper presents a testbed and an evalu-
ation process with specifically designed metrics to evalu-
ate model-driven techniques regarding their maintainabil-
ity and performance against established persistency frame-
works.

1 Introduction

The MDA as defined by the OMG [10] is associated with
a number of benefits for software engineering projects, such
as flexibility, cost efficiency and platform independence.
However, it was mainly intended to be used for develop-
ing new stand-alone applications. However, the software
engineering reality is different: Efforts for software evo-
lution supersede any other part of the software life cycle.
Therefore, approaches to apply model-driven techniques to
software evolution projects is an promising approach.

In the following we consider a software engineering ap-

proach as model-driven if it (a) includes meta-modelling
and (b) makes use of well-defined transformations [9]. By
that we intentionally broaden the definition of the OMG
which defines various specific kind of models, such as com-
putation independent models, platform independent models
and platform specific models. However, this broader view
eases the application of model-driven approaches to soft-
ware evolution questions.

If one accepts this broader view on model-driven soft-
ware engineering, adapter generation, as used for con-
necting new code with legacy applications or legacy data
sources can be done in a model-driven manner. Using the
information contained in the business object model and the
relational database scheme a transformation should gener-
ate a formal mapping between both models. For example,
the model-driven legacy integration tool suite by the Delta
Software Technology Group [2] is such an approach, devel-
oped independently from OMG’s MDA approach.

Given the platform independence and flexibility of such
model-driven techniques, they are a promising approach for
software migration projects, as they map novel object mod-
els to relational databases (or other data storage technolo-
gies, such as ISAM). For exactly the same reasons, model
driven persistency layers sound attractive, as they explic-
itly decouple business logic from data storage technology.
However, in this domain, other technologies are success-
fully used, in particular, so-called persistency frameworks
which persist object models in relational databases. Ac-
cording to recent discussions [4] this topic is still an im-
portant issue. In addition, high-level interfaces to databases
as provided by modern programming environments form a
competing alternative. An example (although platform spe-
cific) is ADO.NET [1] in Microsoft’s .NET environment

which provides flexibility on the query side and exchange-
able databases at the back end. Given the number of soft-
ware applications used for business and administrative tasks
and their life-span which often lasts over decades, it be-
comes clear that software evolution issues are one major
driving factor for the rather important selection of the right
persistency approach (model-driven, framework based or
high-level interfaces). Besides maintainability and flexibil-
ity most often performance is of major concern for such an
persistency approach.

Comparisons of such persistency systems are mostly
done by comparing their features [8, 6]. Unfortunately, un-
til now there is no systematic evaluation of the model-driven
persistency approach comparing the competing alternatives
(like the other alternatives are also not systematically com-
pared). Itis clear, that such a systematic comparison should
evaluate the three above mentioned approaches regarding
their maintainability and performance.

The main contribution of this paper is the presenta-
tion of an evaluation method for model-driven persistency
techniques against these other techniques. The evaluation
method comprises a testbed and goal-driven defined met-
rics (according to the GQM approach [5]) for maintainabil-
ity and performance of the competing solutions. By this,
this article contributes to the empirical evaluation of model-
driven techniques. In the long term, software developers
should benefit from this work by more educated decisions
on the deployment of model-driven techniques for persis-
tence in particular. Besides, the method presented here can
be generalised to a methodology for the systematic evalua-
tion of model-driven techniques applied also to other soft-
ware engineering concerns beyond data persistency.

This work is part of the research project Model Driven
Integration of Business Information Systems (MINT) [12].
MINT is supported by the German Federal Ministry of Edu-
cation and Research in the scope of the Forschungsoffensive
Software Engineering 2006.

The paper is structured as follows. In section 2 specific
design guidelines for such a testbed are discussed and the
architecture of the testbed is presented. Likewise, section
3 presents the process of deriving appropriate metrics and
presents the metrics as such. Section 4 lists and briefly
explains the persistency techniques that will be evaluated.
Preliminary results of using the testbed with existing per-
sistency technology are sketched in section 5. Section 6
concludes and discusses the planned future evaluation work
with the testbed.

2 The Evaluation Testbed

2.1 Design Guidelines to Ensure Validity
of Measurements

The design of the testbed to evaluate and compare persis-
tency techniques highly influences the internal and external
validity of the results [7]. While internal validity describes
the quality of the results regarding the single empirical in-
vestigation (e.g., case study or experiment), the external va-
lidity is concerned with the extent to which the results gen-
eralised beyond the single case study or experiment. Often,
these both kinds of validity counter each selves.

As a testbed, we selected a real-world multi-tier busi-
ness application. In this application, the various persis-
tency techniques are deployed. This forms the only vari-
ation point of the application. To support external validity,
the architecture described below is intentionally a “typical
application”: From a technical viewpoint, its architecture
could be used for many business applications beyond its
specific application domain. To yield a high internal valid-
ity, one has to design the testbed in a way, that the specific
persistency technique is deployed in its best specific way.
For example, in EJB 1.x and 2.x several patterns had to be
considered to yield a satisfying performance in certain situ-
ations. However, such patterns are specific to a persistency
technique and hence not part of the testbed which has to be
designed to allow the use and exchange of various persis-
tency techniques. Therefore, one could question the inter-
nal validity of the results, by arguing that the way we use a
specific technique in our general architecture is uncommon
to its most optimised use in other situations. This would
also lower the external validity. However, there are some
arguments to counter:

e A technical concern, such as persistency, should not
influence the design of the domain oriented business
logic tiers anyhow. If the persistency technique re-
quires such a specific design of the middle tier, then
this is a shortcoming of this technology and should be
made to be a pre-condition of its successful applica-
tion. Much more, such a technology has to be evalu-
ated and compared against competing techniques in-
tentionally without realising any specific technology
concern in the middle-tier.

e All approaches deployed here, are know to yield an
acceptable performance without strong modifications
of the business tier.

2.2 The Architecture of the Example Ap-
plication

One of the first decisions is to select an suitable example
application for the evaluation testbed. On one side it has

CIentn

—O
<W
—0O
Pr

Busiess Logt:

O+

ObFctM odel

R
v

O

Persktence Adaptern

R
v

O

Persktence System n

R
v

O

Database System

Presentatbon/ X
CTent Clentl
Layer
R
|

Bushess
Layer

R

\4

|
Persktence Adapterl

R
Persitence v
Fram ew ork
Layer Persstence System 1

R

\4

|

Data
Layer

@)

Data)

Figure 1. Testbed Architecture

to be simple enough to allow the implementation of a plug-
in architecture for the different persistence systems and to
measure all defined metrics (see section 3). On the other
side it should be a real-world scenario that represents the
vast number of legacy applications out there.

The current evaluation testbed is based on MESCOR, an
extensive program suite for financial research. This pro-
gram suite is a group of standalone applications using a
common server middle tier to access the database. All ap-
plication data is stored in one centralized Oracle database
which contains more than 100 tables. The stored informa-
tion includes very different aspects of the financial research
domain like companies, shares, analysts, industrial sectors
and all related data items.

MESCOR is in daily use by several customers for one
decade now and maintained by andrena objects ag. Client
and server software is written in Borland Delphi and com-
municates via DCOM and sockets. Since 2005 some
parts of the system were migrated to Microsoft. NET (e.g.
MESCOR webclient). In advance an in-depth analysis of all
relevant use cases and the database structure was performed.
So it was possible to choose some parts of the whole system
as examples to evaluate the different techniques.

The first metrics will be measured with the Chartpro-
duction application which creates charts for all share prices
stored in the database. It is a simple use case but it re-
quires a high-performance data access layer and therefore
is a good example application to judge the performance
characteristics of the competing solutions. The other ap-
plications in the evaluation testbed will focus on topics like
complex read/write operations (object trees, updating col-
lections etc.) or user interaction scenarios (short response
time required).

The evaluation is restricted to compare the different so-
lutions for persistency only. We designed a generalized
testbed architecture (see figure 1) to provide a common ap-
proach to exchange the persistence system and gather the
metrics. All testbed applications are structured using 4 lay-
ers, namely (bottom-up):

e The data layer is just the database which is the same
for all applications.

e The persistence framework layer is the most impor-
tant part of the testbed. This is the place where we
inspect and measure the different persistence systems
(e.g. ADO.NET, NHibernate [3], the MINT approach

[12]). Every system has to implement a common set
of service interfaces that define the connection to the
business layer. The mediation between these interfaces
and the persistence system itself is accomplished by a
individual persistence adapter for each system. We use
the facade pattern for the interface definition and im-
plementation in this layer.

e The business and client layers are strictly separated
from the persistence framework layer and only know
its common interface. So there’s no need to change
them when switching the persistence system.

All layers exchange information using a common object
model which was modelled in UML and is tightly related to
the existing database structure. So the object model mainly
consists of simple data transfer objects (DTQOs). Since the
testbed is developed in C# with Microsoft. NET the ob-
jects are implemented as so called “plain old C# objects”
(POCOs). The persistence framework layer has to return its
query results using this object model, too. All layers only
know the interface definitions of the object model. So any
of the persistency techniques may use its own implementa-
tion of the object model if necessary.

In summary the evaluation testbed is a collection of sam-
ple applications that all share the generalized testbed ar-
chitecture. The sample applications focus on different us-
age scenarios to evaluate the competing persistency tech-
niques. All variation is bundled into the persistence frame-
work layer which contains the particular persistency tech-
nique and a specific persistence adapter. The other three
layers stay constant for every application. Every technique
has to provide the same functionality and thus fulfil equal
evaluation criteria.

3 Derivation of Metrics
3.1 The Goal-Question-Metric Approach

We defined the quality plan, which we will use
to evaluate the persistency techniques using the
Goal/Question/Metric (GQM) approach. The GQM
approach [5] is a systematic method to find and define
tailored metrics for a particular environment. In contrast to
the collection of metrics that are chosen just because they
can be measured, the GQM approach helps to identify the
reasons why particular metrics are chosen. It also helps to
interpret the values resulting from the collection of these
metrics. The GQM approach is a top-down methodology
that consists of three steps:

1. Starting from the definition of goals that should be
achieved by the conducted measurements. A goal is
defined using a template which consists of the follow-
ing parts:

Goall Goal2

il B

Questbnll || Questbnl 2 || Questbn2 1 || Questbn2 2 | | Questbn2 3

Metrcl 11| |Metrcl 21| |Metrcl 22| [Metrt2 11| | Metrc2 31| | Metrc2 32

Figure 2. GQM structure as defined in [5]

Purpose What should be achieved by the measure-
ment?

Issue Which characteristics should be measured?

Object Which artefact will be assessed (this may be a
product, a process or a resource)?

Viewpoint From which perspective is the goal defined
(e.g. the end user or the development team)?

2. The next step is to define questions that will, when an-
swered, provide information that will help to find a so-
lution to the goal.

3. To answer these questions quantitatively every ques-
tion is associated with a set of metrics. It has to be con-
sidered that not only objective metrics can be collected
here. Also metrics that are subjective to the viewpoint
of the goal can be listed here.

Figure 2 depicts the three levels of the GQM approach.
The goals are defined on the conceptional level.

3.2 GQM-Plan for Maintainability

Maintainability is hard to measure with empirical met-
rics because many volatile factors (such as developer expe-
rience, development paradigm, etc.) have great influence on
it. That is the main reason why it is hard to validate analyt-
ical metrics. Unlike other maintainability evaluations that
rely on direct analysis of source code (e.g. as published in
[11]) a comparison between model-driven and conventional
development has to focus on more abstract metrics. Mainte-
nance operations on models versus maintenance operations
on source code can not be compared by metrics that are
based on the source code. In a model-driven development
environment a maintenance task will mostly be solved by
changing either the application model, or in some cases by
changing the generator. On the other hand changes in non-
model-driven environments are performed by changing the
source code directly. In the model-driven environment the
code is being generated, therefore the code complexity does
not influence the maintainability. Hence metrics such as
code complexity or size cannot be reasonably applied here.

A solution that facilitates this comparison is to define
project specific, empirical metrics. These metrics can be
found by using the GQM method and creating questions that
involve specific scenarios and tasks that can be found in the
particular project or domain. The major disadvantage of
these metrics is however that they are consequently only
valid in the narrow domain for which they where defined.
Instead of being universally valid they only provide results
for the particular goals of the evaluation plan.

To measure the maintainability of a persistency tech-
nique we defined our first measurement goal according to
the GQM method as follows:

Goal 1: Purpose: Comparison
Object: Different persistency techniques
Issue: Maintainability
Viewpoints: The software development and mainte-
nance team

The following questions were elaborated to cover the
first goal:
Some of the questions are of rather general nature as they
ask for common development efforts.

Question 1.1: How big is the initial effort to understand the
technology and to create a design how the technology
can be implemented into the system?

In order to answer this question we will gather the fol-
lowing metrics:

M1.1.1: Person-days to design and implement the map-
pings that are needed for a special application
(MESCOR Chartproduction). This includes the time
that is needed to understand the technique and do
initial work, such as implementing a generator for a
model-driven technique.

M1.1.2: Amount of aspects that have to be implemented
manually (such as transaction handling, caching,
queries and referential integrity).

M1.1.3: Amount of workarounds that were needed to im-
plement the technology in the system.

M1.1.4: Amount of time, measured in person-days, spent
to implement the workarounds that were needed to im-
plement the technology in the system.

As our example application consists of several more or
less independent parts we want to measure the initial devel-
opment effort for each of them.

Question 1.2: What is the effort to implement further parts
of the system?

M1.2.1: Person-days to implement the mappings that are
needed for each application.
M1.2.2: Time (in hours) spent for testing and debugging.

To be able to make fine-grained statements about the
maintainability of each persistency technique we identified
the most important and most frequently conducted tasks.
As the persistence framework layer is a glue-layer between
database and object model changes made to either of those
will presumably result in changes to the persistence frame-
work layer. Apart from small, trivial adjustments a non-
trivial change is primarily either an addition, change or re-
moval of a persistent class or relation. The resulting ques-
tions for the GQM plan are:

Question 1.3: How big is the effort to extend the persis-
tency layer with a new persistent class?

These metrics will help to answer question 1.3:

M1.3.1: Time to conduct the change in hours.

M1.3.2: Amount of files and/or models that need to be
touched.

M1.3.3: Amount of test and debug runs that were needed
to pass all tests after the change.

Correspondingly to the effort of adding persistent classes
we defined a question for persistent relations.

Question 1.4: How big is the effort to extend the persis-
tency layer with a new persistent relation?

Metrics that will help to answer this question are:

M1.4.1: Time to conduct the change in hours.

M1.4.2: Amount of files and/or models that need to be
touched.

M1.4.3: Amount of test and debug runs that were needed
to pass all tests after the change.

Not only extensions of the static parts of the application
will be measured, also extensions to the business logic have
to be considered:

Question 1.5: How big is the effort to extend the business
facade with new functionality?

The same metrics as for question 1.3 and 1.4 apply here
as well:

M1.5.1: Time to conduct the change in hours.
M1.5.2: Amount of files and/or models that need to be
touched.

M1.5.3: Amount of test and debug runs that were needed
to pass all tests after the change.

For questions 1.3 and 1.4 we defined several change sce-
narios that necessitate these changes. To comply with the
external validity of our evaluation these change scenarios
were elaborated based on the experiences made with the
legacy system.

Depending on the project, e.g. whether it is a newly de-
veloped application or if an already existing database should
be integrated into a object-oriented environment, different
abilities of the mapping technology are crucial. In a migra-
tion project the ability of a persistency technique to bridge
large differences between database and object model layout
may be of capital importance. Whereas in a project which
has no need to respect legacy applications this aspect may
be less important. To reflect these considerations in the eval-
uation we elaborated three different scenarios in which we
will execute our measurements:

1. Definition of a new database schema according to the
object model.

2. Mapping the newly created object model to the legacy
database.

3. Migrating the mapping from the legacy database to a
newly defined database schema.

In each of these scenarios we will collect the presented met-
rics. This will lead to a differentiation which persistency
technique is most suitable for a particular scenario.

3.3 GQM-Plan for Performance

Apart from maintenance aspects the most often the per-
formance of a persistency technique is one of the major
concerns. To measure the performance of these techniques
we defined our second measurement goal according to the
GQM method as follows:

Goal 2: Purpose: Comparison
Object: Different persistency techniques
Issue: Performance
Viewpoints: The software development and mainte-
nance team

The questions that will cover the second goal can be
parted into two categories. The first contains questions that
are of a general nature. Those can be asked for all client
applications that come with the example system. The lat-
ter covers questions that are specific to actions that can be
performed in special applications. The application specific
questions and metrics are tailored according to the function-
ality of each application. Because it would require specific

knowledge of the applications on order to understand them
reasonably only the general questions and metrics will be
mentioned here. The general questions are:

Question 2.1: Which impact does the choice of the persis-
tency technigue have on the time that is needed to start
the application?

To measure this question we derived the following met-
rics:

M2.1.1: Time to initialize the application measured in mil-
liseconds. This metric is measured from the entry of an
special init-method until its end. Within this method
initializations components such as database connec-
tions and caches are executed.

The interpretation of the results of this metric will be
based on the assumption that a short initialization time is
better than a long one. However it is hard to say whether
a vast or a narrow distribution where the values are rather
small respectively large is more convenient. Anyhow we
derive several dependent metrics from M2.1.1 including sta-
tistical values such as minimum, maximum, mean value or
standard deviation. In this way, it is possible to distinguish
each persistency type according to the current requirements
of an application.

Another important issue is to identify where the bottle-
necks of a persistency technology are. Some may be faster
executing queries but at the cost of a larger cache and there-
fore a higher memory consumption. To find these bottle-
necks we derived the following question:

Question 2.2: Which layers (database, persistence, busi-
ness logic) and resources (CPU, memory, network) are
bottlenecks for the application?

The metrics that will help to answer this questions mea-
sure the resource utilisation per layer. E.g. CPU load for the
database server or memory usage of the persistence layer.
Each combination of layer, resource and business facade
method will be measured separately.

M2.2.1: CPU utilization of business layer. Measured in
milliseconds that are spent in the classes of the busi-
ness logic.

M2.2.2: Memory utilization of business layer. Memory
consumption by classes of the business logic. This
metric is split into (@) the maximum memory (in
megabytes) used during the test run and (b) the inte-
gral of the memory usage over the time of the test run
(in megabytes over seconds).

M2.2.3: CPU utilization of persistence layer. Measured in
milliseconds that are spent in the classes of the persis-
tence layer.

M2.2.4: Memory utilization of persistence layer. Mem-
ory consumption by classes of the persistence layer.
This metric is split into (a) the maximum memory (in
megabytes) used during the test run and (b) the integral
of the memory usage over the time of the test run (in
megabytes over seconds).

M2.2.5: CPU utilization of database layer. Measured in
milliseconds that are spent for the database operations.

M2.2.6: Memory utilization of database layer. Memory
consumption of the database. This metric is split into
(a) the maximum memory in megabytes) used during
the test run and (b) the integral of the memory usage
over the time of the test run (in megabytes over sec-
onds).

Almost all applications that come with the example sys-
tem have direct interactions with the user. Hence it is im-
portant for the performance of the system how responsive it
is.

Question 2.3: How good is the responsiveness of the sys-
tem from the client’s view?

All operations that can be performed within one of the
applications are bundled in the corresponding business logic
facades. Therefore the responsiveness of each of these
methods will reflect the performance of the user interaction.

M2.3.1: Response time in milliseconds of the methods of
the business logic facades. Measured for each method
using different parameter assignments.

M2.3.2: Frequency distribution and standard deviation of
the response time of each method. Measured for using
different parameter assignments.

Another very important requirement for a persistency
technique is their scalability with an increasing number
of requests. Consequently the following question will be
asked:

Question 2.4: How big is the impact of an increasing load
on questions 2.2 and 2.3?

M2.4.1: To find out the scalability behaviour of each per-
sistency technique the measurements of questions 2.2
and 2.3 will be performed using an increasing amount
of clients doing different operations.

Depending on the usage scenario there are different dis-
tribution possibilities for each layer. E.g. the database and

the persistence framework layer may be run on different
servers. To identify the impact of the client-server com-
munication on the overall performance of the persistency
technique we added another question:

Question 2.5: How big is the part of the client-server com-
munication in the response time?

M2.5.1: Perform measurements for questions 2.2 and 2.3
on one server as well as distributed over two different
servers. Measure the difference for each operation.

4 Assessed Persistency Techniques

The following persistency techniques will be assessed
during our evaluation:

e Manually implemented persistence layer: High-
level interfaces to databases such as such as ADO.NET
give developers flexibility on the query side and ex-
changeable databases at the back end. Based on these
interfaces an object relational mapping will be imple-
mented.

e Persistence framework: Persistence frameworks (in
our case NHibernate) provide an automatic mapping
of objects to database rows using annotations or ex-
ternal mapping specifications. Such frameworks also
include a vast range of features including caches and
transaction handling.

e Generated adapters: These techniques can be used to
generate adapter classes tailored for specific domains.

e Combination of generator and persistence frame-
work: Generators can be used to create mapping defi-
nitions and supporting classes for a persistence frame-
work. We will evaluate two different kinds of this com-
bination:

— Out-of-the-box generators: Existing generators
that can produce mapping files for persistence
frameworks.

— Project specific generators: A project specific
generator is created for the use in a specific en-
vironment and to generate exactly the output that
is needed for the project.

5 Preliminary Results

In this paper we presented a testbed architecture we in-
tend to use for the evaluation of different model-driven and
non-model-driven persistency techniques. With defining the

testbed and elaborating the GQM plans for maintenance
and performance we laid the headstone for this compari-
son. As for now we started to implement the persistence
adapters for ADO.NET and NHibernate for the parts of the
object model and business fagade that are necessary to com-
plete the aforementioned Chartproduction application. The
model-driven persistency techniques will be implemented
as a next step.

The first test runs to collect the performance metrics,
which we conducted in prior to the actual evaluation showed
that both techniques are almost equal concerning the per-
formance of the Chartproducion tool. However, a critical
aspect seemed to be the caching mechanism of NHibernate.
The Chartproduction tool has a special batch run mode dur-
ing which it creates charts for all shares in the repository.
During this run the time for creating a single chart increased
linearly, resulting in an overall runtime being ten to fifteen
times higher than the respective ADO.NET implementation.
After changing the NHibernate adapter to clear the session
cache after the creation of a chart the production times were
similar for both technologies. It is important to mention that
the performance of those first implementations was only
nearly equal for this particular use-case. Further tests re-
vealed that the performance differs in other scenarios.

The maintainability measures have not yet started, how-
ever there is one metric (M1.1.1) for which we already have
some results: Even though it is difficult to measure the ini-
tial skill adaptation another preliminary result was the time
we needed to implement this first part of the adapters. The
NHibernate adapter took us 9 days until all our tests were
successful, where the ADO.NET adapter took us 12 days to
complete.

6 Conclusions and Future Work

As mentioned, the results presented are preliminary. The
actual contribution is the presentation of a systematic ap-
proach to validate the benefits of model-driven techniques
compared to other approaches for object persistency. From
a more general viewpoint, such a systematic approach to
evaluate and compare the benefits of model-driven develop-
ment help to better understand when its specific advantages
justify its additional effort of meta-modelling and the defi-
nition of transformations.

In our specific MINT project the next step is to com-
pare project-specific generators against out-of-the-box gen-
erators for this domain. By doing this we hope to find out
if the overhead of implementing a very specific generator
pays off by lowering the development and maintenance ef-
forts of the actual application. We are currently working
on the implementation of a project-specific generator that
will create an NHibernate mapping including all necessary
classes, such as the POCOs and manager classes.

References

[1] ADO.NET. http://msdn2.microsoft.com/
en-us/library/e80y5yhx.aspx. Last Access:
26-01-2007.

[2] Delta Software Technology. http://www.d-s-t-g.
com. Last Access: 26-01-2007.

[3] NHibernate for .NET. http://www.hibernate.
org/. Last Access: 26-01-2007.

[4] Objects and Databases: State of the Union 2006, A panel
discussion at OOPSLA 2006. http://www.ddj.com/
dept/database/194400088?pgno=1, November
2006. Last Access: 26-01-2007.

[5] V. Basili, G. Caldeira, and H. D. Rombach. Encyclopedia
of Software Engineering, chapter The Goal Question Metric
Approach. Wiley, 1994.

[6] Cunningham & Cunningham Inc. Object Relational Tool
Comparison Dot Net. http://c2.com/cgi/wiki?
ObjectRelationalToolComparisonDotNet,
November 2006. Last Access: 26-01-2007.

[7] B.Freimut, T. Punter, S. Biffl, and M. Ciolkowski. State-of-
the-art in empirical studies. Technical Report VISEK/007/E,
VISEK, University of Kaiserslautern, 2002.

[8] F. Marguerie. Choosing an object-relational mapping tool.
http://madgeek.com/Articles/ORMapping/
EN/mapping.htm. Last Access: 26-01-2007.

[9] S.J. Mellor, A. N. Clark, and T. Futagami. Model-driven
development. |EEE Software, 20:14-18, 2003.

[10] O.M. G. (OMG). Model driven architecture - specifications,
2006. Last Access: 26-01-2007.

[11] C.S. Ramos, K. M. Oliveira, and N. Anquetil. Legacy soft-
ware evaluation model for outsourced maintainer. In Pro-
ceedings of the Eighth European Conference on Software
Maintenance and Reengineering, 2004. CSMR 2004, pages
48-57, Mar 2004.

[12] N. Streekmann, U. Steffens, C. Mobus, and H. Garbe.
Model-driven integration of business information systems.
In Softwaretechnik-Trends, volume 26, pages 9-13, Novem-
ber 2006.

