Table des matières
Joindre l'auteur

Exercices sur les machines thermiques

1 – A) Une centrale électrique fonctionne suivant un cycle ditherme irréversible. La machine thermique entraîne un turbo-alternateur produisant l’électricité et nous admettons que la transformation travail-énergie électrique se fait sans pertes c’est à dire avec un rendement égal à 1.
Le rendement global de la centrale, défini par est la puissance électrique produite et l’énergie thermique fournie par le combustible " brûlé ", peut s’écrire :
- est le rendement de la machine fonctionnant suivant un cycle de Carnot (ditherme réversible)
- un coefficient tenant compte des pertes thermiques dans l’environnement défini par ( est la puissance calorifique cédée par la chaudière à la machine thermique)
- un coefficient tenant compte des irréversibilités défini par ( est le rendement réel de la machine thermique fonctionnant suivant le cycle ditherme irréversible)
A)1) La source chaude est à température , la source froide à une température . Démontrer, à partir des premier et second principes de la Thermodynamique que  ; Application numérique.
A)2) Pour un rendement global , calculer la puissance électrique produite si
A)3) Les pertes thermiques sont de 15%, en déduire les valeurs numériques de et de .
A)4) Calculer puissance calorifique échangée avec la source froide.
A)5) Quelle est la valeur du rendement réel de la machine thermique ? En déduire la valeur numérique de .

B) On s’intéresse au fonctionnement d’une pompe à chaleur fonctionnant suivant un cycle de Carnot entre les températures Celsius et .
B)1) Expliquer, à partir d’un schéma, où l’on symbolisera la pompe à chaleur et les sources de chaleur chaude et froide, les échanges d’énergie à savoir les puissances calorifiques avec la source chaude, avec la source froide et le travail échangé par seconde.
B)2) Définir le coefficient de performance et montrer qu’il est égal à .
B)3) La puissance est d’origine électrique. Pour une habitation dont le besoin en chauffage est de , comparer énergétiquement les 3 systèmes ci-après :
- chaudière à combustion d’un rendement égal à 0,9
- chauffage électrique à effet Joule avec la centrale étudiée en A)
- pompe à chaleur avec la centrale étudiée en A)

| Méthodologie | Réponse A)1) | Réponse A)2) | Réponse A)3) | Réponse A)4) | Réponse B)1) | Réponse B)2) | Réponse B)3) |

2 - 1) Dans une centrale de production d’électricité, une turbine à vapeur, actionnée par un moteur thermique, entraîne le rotor de l’alternateur qui produit le champ magnétique tournant.
Dans ce moteur thermique, de l’eau décrit un cycle de transformations. L’eau reçoit de la chaleur (le flux de chaleur est ) d’une chaudière (source de chaleur) et fournit pendant l’unité de temps le travail à la turbine.
1)1) Définir le rendement du moteur thermique.
1)2) Montrer que l’on doit nécessairement disposer d’une source froide pour réaliser un moteur (pour cela on écrira les premier et second principes de la Thermodynamique pour un cycle avec une seule source de chaleur et on démontrera que l’eau ne peut fournir du travail à la turbine).
1)3) En écrivant les premier et second principes pour un cycle avec deux sources de chaleur à températures (), montrer que le rendement du moteur est tel que :
1)4) Est-il possible d’obtenir un rendement du moteur thermique égal à 1 même en l’absence de tout frottement et de toutes fuites thermiques ?

2) Dans la centrale nucléaire du Blayais, le long de l’estuaire de la Garonne, l’eau de refroidissement prélevée dans l’estuaire subit en circulant dans le condenseur une élévation de 10°C (elle entre à 15°C et sort à 25°C).
Dans l’une des tranches, l’alternateur fournit la puissance électrique . Les rendements de l’alternateur et du moteur thermique actionnant la turbine sont respectivement .
2)1) Expliquer le rôle du condenseur
2)2) Exprimer le flux de chaleur en fonction de .
En déduire que le flux de chaleur fourni à l’eau de refroidissement est égal à 1684 MW.
2)3) Calculer le débit en kg/s de l’eau de refroidissement (on rappelle la loi de calorimétrie dans une transformation à pression constante ; la capacité calorifique massique de l’eau liquide est ).

3) Dans le condenseur, la vapeur d’eau à température est séparée de l’eau de refroidissement (que, par simplification, nous prendrons uniforme et égale à ) par une paroi d’épaisseur L répondant à l’hypothèse de " mur thermique ".
3)1) Montrer que le champ de température T dans la paroi est régi par les équations

3)2) Si est la conductivité thermique de la paroi et L = 0,15 m son épaisseur, déduire la densité de flux de chaleur traversant la paroi et la surface d’échange nécessaire pour le flux de chaleur .

Méthodologie | Réponse 1)1) | Réponse 1)2) | Réponse 1)3) | Réponse 1)4) | Réponse 2)1) | Réponse 2)2) | Réponse 2)3) | Réponse 3)1) | Réponse 3)2) |

3 - Soit une machine utilisant comme fluide l’air assimilé à un