CNRS Nantes University US2B US2B
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***  AGW_protein2_240712  ***

Normal Mode Analysis for ID 2407121041023297570

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 1 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity
mode 7 1.00 0.6609
mode 8 1.04 0.4886
mode 9 1.15 0.7304
mode 10 2.73 0.0444
mode 11 2.77 0.1234
mode 12 3.36 0.2591
mode 13 3.59 0.2911
mode 14 3.82 0.1964
mode 15 4.31 0.7063
mode 16 4.74 0.6834
mode 17 4.79 0.0605
mode 18 5.44 0.1286
mode 19 5.95 0.4878
mode 20 6.09 0.5033
mode 21 6.48 0.0604
mode 22 6.77 0.0332
mode 23 7.17 0.2131
mode 24 7.64 0.6869
mode 25 7.86 0.2950
mode 26 7.93 0.6390
mode 27 8.62 0.4965
mode 28 9.48 0.6627
mode 29 9.52 0.6144
mode 30 9.75 0.4993
mode 31 10.51 0.6219
mode 32 10.90 0.4330
mode 33 11.31 0.0917
mode 34 11.34 0.1684
mode 35 11.94 0.1629
mode 36 12.08 0.4335
mode 37 12.29 0.4513
mode 38 12.56 0.3578
mode 39 12.77 0.4871
mode 40 12.99 0.3609
mode 41 13.52 0.3945
mode 42 13.66 0.4343
mode 43 14.55 0.3952
mode 44 14.84 0.4592
mode 45 15.02 0.3803
mode 46 15.25 0.2707
mode 47 15.81 0.4448
mode 48 16.08 0.2394
mode 49 16.26 0.2768
mode 50 16.54 0.0510
mode 51 16.57 0.1221
mode 52 16.73 0.1070
mode 53 17.39 0.1951
mode 54 17.52 0.3000
mode 55 17.65 0.3518
mode 56 18.14 0.4277
mode 57 18.59 0.1097
mode 58 18.72 0.3601
mode 59 18.97 0.2529
mode 60 19.08 0.3415
mode 61 19.13 0.4026
mode 62 19.23 0.3083
mode 63 20.47 0.1632
mode 64 20.61 0.4702
mode 65 20.74 0.4072
mode 66 21.30 0.2965
mode 67 21.50 0.2077
mode 68 21.84 0.1456
mode 69 22.08 0.2999
mode 70 22.11 0.4208
mode 71 22.62 0.1989
mode 72 22.76 0.1491
mode 73 22.87 0.4636
mode 74 22.99 0.2991
mode 75 23.22 0.4920
mode 76 23.35 0.2556
mode 77 23.47 0.1460
mode 78 23.56 0.4213
mode 79 23.65 0.1510
mode 80 23.79 0.2960
mode 81 23.91 0.4243
mode 82 24.16 0.3510
mode 83 24.47 0.3903
mode 84 24.57 0.3491
mode 85 24.65 0.2264
mode 86 24.84 0.2378
mode 87 25.12 0.3301
mode 88 25.24 0.2884
mode 89 25.55 0.2417
mode 90 25.65 0.3828
mode 91 25.69 0.2080
mode 92 25.90 0.4032
mode 93 26.14 0.3230
mode 94 26.49 0.2122
mode 95 26.66 0.2295
mode 96 26.72 0.3298
mode 97 26.95 0.1702
mode 98 26.97 0.2727
mode 99 27.09 0.2114
mode 100 27.34 0.3540
mode 101 27.43 0.2170
mode 102 27.59 0.3741
mode 103 27.81 0.4666
mode 104 27.99 0.4301
mode 105 28.23 0.4409
mode 106 28.25 0.3536

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: April 25th, 2023.