CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***  3blh_a_vs_3lq5_a  ***

Normal Mode Analysis for ID 22051215591366107

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 3 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity
mode 7 1.00 0.0242
mode 8 1.11 0.4187
mode 9 1.31 0.2599
mode 10 1.59 0.0670
mode 11 1.64 0.0150
mode 12 1.77 0.0976
mode 13 1.90 0.3491
mode 14 2.31 0.1223
mode 15 2.43 0.4768
mode 16 2.64 0.4015
mode 17 2.76 0.4274
mode 18 2.94 0.2419
mode 19 3.09 0.3405
mode 20 3.19 0.3825
mode 21 3.26 0.0656
mode 22 3.45 0.2249
mode 23 3.47 0.3370
mode 24 3.58 0.1757
mode 25 3.68 0.1452
mode 26 3.75 0.1485
mode 27 3.87 0.0465
mode 28 3.96 0.4510
mode 29 4.03 0.1676
mode 30 4.12 0.3225
mode 31 4.21 0.3279
mode 32 4.38 0.5269
mode 33 4.57 0.4132
mode 34 4.61 0.4565
mode 35 4.71 0.3593
mode 36 4.78 0.3457
mode 37 4.79 0.1689
mode 38 4.80 0.2904
mode 39 4.98 0.2988
mode 40 5.04 0.3528
mode 41 5.12 0.3792
mode 42 5.22 0.2344
mode 43 5.25 0.4300
mode 44 5.32 0.2451
mode 45 5.36 0.2008
mode 46 5.44 0.3013
mode 47 5.51 0.5634
mode 48 5.61 0.2706
mode 49 5.64 0.3568
mode 50 5.69 0.3834
mode 51 5.73 0.3485
mode 52 5.80 0.1499
mode 53 5.92 0.3435
mode 54 6.00 0.5200
mode 55 6.04 0.3376
mode 56 6.10 0.4528
mode 57 6.16 0.4182
mode 58 6.22 0.4757
mode 59 6.29 0.3920
mode 60 6.35 0.3523
mode 61 6.38 0.3138
mode 62 6.42 0.3411
mode 63 6.56 0.3195
mode 64 6.59 0.2983
mode 65 6.64 0.2736
mode 66 6.72 0.4512
mode 67 6.75 0.3929
mode 68 6.77 0.2888
mode 69 6.84 0.0531
mode 70 6.91 0.0870
mode 71 6.96 0.2301
mode 72 6.98 0.3094
mode 73 7.07 0.2921
mode 74 7.12 0.1843
mode 75 7.16 0.5061
mode 76 7.25 0.3520
mode 77 7.27 0.4434
mode 78 7.32 0.4228
mode 79 7.40 0.3885
mode 80 7.44 0.3875
mode 81 7.45 0.3529
mode 82 7.50 0.4366
mode 83 7.59 0.3671
mode 84 7.61 0.4924
mode 85 7.67 0.4633
mode 86 7.70 0.4269
mode 87 7.72 0.3901
mode 88 7.74 0.4756
mode 89 7.77 0.4073
mode 90 7.84 0.3843
mode 91 7.88 0.3141
mode 92 7.92 0.3667
mode 93 7.95 0.4066
mode 94 8.00 0.3614
mode 95 8.02 0.3730
mode 96 8.12 0.3730
mode 97 8.20 0.3670
mode 98 8.22 0.3444
mode 99 8.28 0.3586
mode 100 8.32 0.3040
mode 101 8.39 0.3177
mode 102 8.40 0.4179
mode 103 8.43 0.4786
mode 104 8.52 0.4527
mode 105 8.60 0.5235
mode 106 8.62 0.3278

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.