CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***  hexokinase bound   ***

Normal Mode Analysis for ID 22050518240126990

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 1 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity
mode 7 1.00 0.1002
mode 8 1.14 0.1232
mode 9 1.32 0.4587
mode 10 1.60 0.1731
mode 11 1.75 0.0944
mode 12 1.97 0.0139
mode 13 2.22 0.5517
mode 14 2.47 0.5705
mode 15 2.58 0.4408
mode 16 2.91 0.5446
mode 17 3.08 0.5296
mode 18 3.29 0.4639
mode 19 3.34 0.3535
mode 20 3.49 0.3554
mode 21 3.61 0.1960
mode 22 3.81 0.3720
mode 23 3.96 0.4849
mode 24 4.04 0.6068
mode 25 4.29 0.5434
mode 26 4.37 0.6617
mode 27 4.50 0.6972
mode 28 4.56 0.1937
mode 29 4.80 0.3553
mode 30 4.96 0.1598
mode 31 5.10 0.4947
mode 32 5.23 0.3402
mode 33 5.27 0.2714
mode 34 5.33 0.2284
mode 35 5.41 0.4321
mode 36 5.46 0.3943
mode 37 5.55 0.4942
mode 38 5.56 0.4409
mode 39 5.66 0.4723
mode 40 5.76 0.2283
mode 41 5.85 0.3672
mode 42 5.87 0.2212
mode 43 6.07 0.4023
mode 44 6.15 0.5646
mode 45 6.23 0.2236
mode 46 6.25 0.0714
mode 47 6.29 0.4518
mode 48 6.39 0.3483
mode 49 6.44 0.5020
mode 50 6.48 0.5582
mode 51 6.56 0.3672
mode 52 6.58 0.0767
mode 53 6.66 0.4239
mode 54 6.67 0.4726
mode 55 6.75 0.4200
mode 56 6.82 0.3646
mode 57 7.01 0.4975
mode 58 7.04 0.4754
mode 59 7.09 0.2607
mode 60 7.17 0.5878
mode 61 7.23 0.5241
mode 62 7.29 0.4605
mode 63 7.34 0.4679
mode 64 7.37 0.6027
mode 65 7.40 0.3030
mode 66 7.46 0.4740
mode 67 7.52 0.3264
mode 68 7.56 0.4091
mode 69 7.59 0.5410
mode 70 7.66 0.4453
mode 71 7.74 0.3885
mode 72 7.78 0.3760
mode 73 7.79 0.4839
mode 74 7.87 0.4108
mode 75 7.92 0.4758
mode 76 7.94 0.5731
mode 77 7.99 0.3476
mode 78 8.03 0.5190
mode 79 8.07 0.5898
mode 80 8.08 0.4774
mode 81 8.09 0.4984
mode 82 8.17 0.2112
mode 83 8.20 0.4003
mode 84 8.22 0.3864
mode 85 8.25 0.3552
mode 86 8.33 0.4299
mode 87 8.37 0.5939
mode 88 8.40 0.4746
mode 89 8.43 0.5424
mode 90 8.49 0.5066
mode 91 8.52 0.4967
mode 92 8.55 0.4925
mode 93 8.66 0.1566
mode 94 8.68 0.3028
mode 95 8.70 0.3983
mode 96 8.74 0.4078
mode 97 8.77 0.3502
mode 98 8.80 0.4478
mode 99 8.81 0.3462
mode 100 8.89 0.4604
mode 101 8.92 0.4399
mode 102 8.99 0.5067
mode 103 9.04 0.3849
mode 104 9.06 0.2659
mode 105 9.09 0.4742
mode 106 9.15 0.4482

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.