CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***  CIRCADIAN CLOCK PROTEIN, TRANSFERASE 10-MAR-06 2GBL  ***

Normal Mode Analysis for ID 22013106500182055

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 5 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity
mode 7 1.00 0.0028
mode 8 1.72 0.0040
mode 9 2.37 0.0040
mode 10 2.69 0.0041
mode 11 3.69 0.0037
mode 12 4.98 0.0420
mode 13 5.32 0.7191
mode 14 5.62 0.5891
mode 15 5.86 0.4996
mode 16 5.99 0.4372
mode 17 6.03 0.4241
mode 18 6.86 0.4049
mode 19 6.89 0.7106
mode 20 6.93 0.7186
mode 21 7.00 0.8700
mode 22 7.07 0.3069
mode 23 7.34 0.1776
mode 24 7.53 0.2281
mode 25 7.72 0.0335
mode 26 8.41 0.0498
mode 27 8.56 0.7419
mode 28 8.87 0.1137
mode 29 9.05 0.2495
mode 30 9.25 0.2943
mode 31 9.42 0.1542
mode 32 9.55 0.4249
mode 33 9.65 0.4386
mode 34 10.14 0.5179
mode 35 10.18 0.5651
mode 36 10.26 0.7083
mode 37 10.51 0.7342
mode 38 10.55 0.7407
mode 39 11.36 0.4282
mode 40 11.68 0.4911
mode 41 11.92 0.0509
mode 42 11.97 0.4974
mode 43 12.00 0.5929
mode 44 12.10 0.6080
mode 45 12.17 0.2930
mode 46 12.36 0.2761
mode 47 12.58 0.5373
mode 48 12.83 0.6348
mode 49 13.04 0.3571
mode 50 13.11 0.2483
mode 51 13.20 0.3135
mode 52 13.48 0.5087
mode 53 13.67 0.4371
mode 54 13.68 0.5881
mode 55 14.10 0.5936
mode 56 14.46 0.3779
mode 57 14.49 0.3887
mode 58 14.58 0.5232
mode 59 14.80 0.4914
mode 60 15.34 0.2832
mode 61 15.39 0.4533
mode 62 15.59 0.1168
mode 63 15.88 0.0634
mode 64 15.97 0.4355
mode 65 16.07 0.4491
mode 66 16.11 0.4214
mode 67 16.16 0.4859
mode 68 16.43 0.3368
mode 69 16.73 0.5631
mode 70 16.82 0.5172
mode 71 16.86 0.6137
mode 72 17.00 0.4558
mode 73 17.20 0.2803
mode 74 17.25 0.5242
mode 75 17.32 0.4694
mode 76 17.50 0.6091
mode 77 17.71 0.4691
mode 78 17.73 0.5844
mode 79 18.13 0.2674
mode 80 18.41 0.3868
mode 81 18.70 0.5138
mode 82 18.79 0.4958
mode 83 18.91 0.5478
mode 84 18.98 0.5220
mode 85 19.15 0.4904
mode 86 19.15 0.5091
mode 87 19.32 0.5017
mode 88 19.36 0.5987
mode 89 19.42 0.5825
mode 90 19.46 0.5372
mode 91 19.67 0.5377
mode 92 19.86 0.5925
mode 93 20.02 0.4265
mode 94 20.10 0.6247
mode 95 20.32 0.4577
mode 96 20.49 0.4081
mode 97 20.59 0.4370
mode 98 20.67 0.4169
mode 99 20.84 0.4063
mode 100 20.90 0.3689
mode 101 20.97 0.3723
mode 102 21.03 0.3089
mode 103 21.08 0.4751
mode 104 21.13 0.5458
mode 105 21.28 0.4000
mode 106 21.30 0.3602

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.