CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***  6B73.S67.SM  ***

Normal Mode Analysis for ID 210720075352116317

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 2 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity
mode 7 1.00 0.0160
mode 8 1.54 0.1018
mode 9 1.57 0.0236
mode 10 1.68 0.1141
mode 11 1.82 0.2491
mode 12 1.92 0.0528
mode 13 2.45 0.4839
mode 14 2.54 0.3870
mode 15 2.85 0.1889
mode 16 2.89 0.1819
mode 17 3.25 0.2352
mode 18 3.38 0.1451
mode 19 3.39 0.0286
mode 20 3.55 0.1873
mode 21 3.66 0.4454
mode 22 3.83 0.4758
mode 23 3.88 0.4041
mode 24 4.12 0.4129
mode 25 4.23 0.3242
mode 26 4.49 0.2950
mode 27 4.53 0.3547
mode 28 4.61 0.0743
mode 29 4.74 0.3313
mode 30 4.83 0.4519
mode 31 4.99 0.4329
mode 32 5.15 0.3779
mode 33 5.22 0.4333
mode 34 5.37 0.4544
mode 35 5.54 0.3386
mode 36 5.61 0.3894
mode 37 5.72 0.3429
mode 38 5.76 0.2679
mode 39 5.82 0.4584
mode 40 5.98 0.1321
mode 41 6.14 0.4906
mode 42 6.25 0.4430
mode 43 6.31 0.3354
mode 44 6.39 0.3652
mode 45 6.45 0.5046
mode 46 6.57 0.3044
mode 47 6.67 0.4575
mode 48 6.70 0.2721
mode 49 6.77 0.3989
mode 50 6.88 0.2329
mode 51 6.99 0.0581
mode 52 7.02 0.3411
mode 53 7.08 0.5111
mode 54 7.20 0.3900
mode 55 7.22 0.4654
mode 56 7.29 0.4577
mode 57 7.46 0.4443
mode 58 7.49 0.3038
mode 59 7.56 0.5229
mode 60 7.65 0.4424
mode 61 7.71 0.4111
mode 62 7.87 0.5106
mode 63 7.99 0.5300
mode 64 8.11 0.3585
mode 65 8.12 0.4276
mode 66 8.22 0.1945
mode 67 8.37 0.4987
mode 68 8.39 0.4903
mode 69 8.55 0.5141
mode 70 8.64 0.3543
mode 71 8.67 0.3604
mode 72 8.74 0.4843
mode 73 8.77 0.2788
mode 74 8.84 0.4149
mode 75 8.88 0.3499
mode 76 8.91 0.0140
mode 77 9.04 0.3901
mode 78 9.17 0.4231
mode 79 9.28 0.4671
mode 80 9.30 0.3653
mode 81 9.33 0.4880
mode 82 9.41 0.4272
mode 83 9.54 0.4904
mode 84 9.63 0.2981
mode 85 9.67 0.3122
mode 86 9.72 0.3090
mode 87 9.73 0.0749
mode 88 9.81 0.3641
mode 89 9.89 0.2747
mode 90 9.95 0.3706
mode 91 10.02 0.4458
mode 92 10.07 0.4582
mode 93 10.15 0.4016
mode 94 10.22 0.1801
mode 95 10.31 0.4529
mode 96 10.34 0.3156
mode 97 10.44 0.5025
mode 98 10.53 0.4098
mode 99 10.62 0.4096
mode 100 10.64 0.3981
mode 101 10.68 0.5001
mode 102 10.74 0.3617
mode 103 10.79 0.2018
mode 104 10.87 0.4355
mode 105 10.92 0.4815
mode 106 10.95 0.3638

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.