CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***    ***

Normal Mode Analysis for ID 210220065313110940

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 2 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity
mode 7 1.00 0.0185
mode 8 1.65 0.0606
mode 9 2.01 0.6597
mode 10 2.38 0.6063
mode 11 2.51 0.6553
mode 12 3.08 0.0213
mode 13 3.85 0.6444
mode 14 4.39 0.2706
mode 15 4.97 0.6424
mode 16 5.03 0.6468
mode 17 5.81 0.3775
mode 18 5.93 0.4020
mode 19 6.30 0.0941
mode 20 6.54 0.1555
mode 21 6.68 0.3727
mode 22 7.08 0.5495
mode 23 7.49 0.4698
mode 24 7.72 0.4313
mode 25 7.86 0.4420
mode 26 8.26 0.3787
mode 27 8.34 0.5023
mode 28 8.71 0.5169
mode 29 8.90 0.4877
mode 30 9.20 0.1582
mode 31 9.40 0.4927
mode 32 9.59 0.2783
mode 33 9.94 0.4064
mode 34 10.35 0.0907
mode 35 10.54 0.3721
mode 36 10.67 0.4192
mode 37 10.79 0.4893
mode 38 10.85 0.3393
mode 39 11.17 0.4183
mode 40 11.29 0.6472
mode 41 11.44 0.4503
mode 42 11.47 0.2175
mode 43 12.02 0.5001
mode 44 12.27 0.6197
mode 45 12.31 0.5959
mode 46 12.59 0.6422
mode 47 12.84 0.6659
mode 48 12.91 0.3391
mode 49 13.01 0.4776
mode 50 13.40 0.5388
mode 51 13.79 0.3178
mode 52 13.89 0.3354
mode 53 14.15 0.5197
mode 54 14.38 0.6148
mode 55 14.55 0.4039
mode 56 14.77 0.4796
mode 57 14.91 0.5056
mode 58 15.09 0.4222
mode 59 15.34 0.3204
mode 60 15.43 0.3711
mode 61 15.63 0.4608
mode 62 15.77 0.4319
mode 63 15.90 0.4799
mode 64 16.12 0.5043
mode 65 16.21 0.4490
mode 66 16.35 0.5123
mode 67 16.41 0.4948
mode 68 16.61 0.4629
mode 69 16.65 0.3203
mode 70 16.75 0.2929
mode 71 17.11 0.4368
mode 72 17.33 0.3057
mode 73 17.40 0.5149
mode 74 17.58 0.3818
mode 75 17.61 0.4561
mode 76 17.82 0.2855
mode 77 18.02 0.3984
mode 78 18.25 0.4426
mode 79 18.33 0.3288
mode 80 18.46 0.4866
mode 81 18.55 0.3878
mode 82 18.71 0.2900
mode 83 18.77 0.4826
mode 84 18.84 0.4440
mode 85 18.99 0.4217
mode 86 19.12 0.4853
mode 87 19.39 0.4885
mode 88 19.51 0.3651
mode 89 19.59 0.4977
mode 90 19.71 0.4268
mode 91 19.91 0.3681
mode 92 19.95 0.5370
mode 93 20.12 0.4780
mode 94 20.31 0.3541
mode 95 20.41 0.5159
mode 96 20.47 0.4408
mode 97 20.60 0.3517
mode 98 20.74 0.3221
mode 99 20.83 0.4819
mode 100 20.91 0.4792
mode 101 20.96 0.4338
mode 102 21.08 0.2785
mode 103 21.16 0.3983
mode 104 21.23 0.4312
mode 105 21.36 0.4074
mode 106 21.44 0.4348

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.