CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***    ***

Normal Mode Analysis for ID 210217052850102084

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 2 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity
mode 7 1.00 0.0180
mode 8 1.64 0.0549
mode 9 2.05 0.6412
mode 10 2.36 0.5475
mode 11 2.64 0.6643
mode 12 3.19 0.0285
mode 13 3.85 0.5931
mode 14 4.48 0.2368
mode 15 5.03 0.6111
mode 16 5.17 0.6569
mode 17 5.55 0.2808
mode 18 5.88 0.1205
mode 19 6.18 0.2024
mode 20 6.39 0.1108
mode 21 6.54 0.2235
mode 22 6.76 0.2187
mode 23 6.90 0.3223
mode 24 7.23 0.3125
mode 25 7.68 0.4262
mode 26 7.80 0.3987
mode 27 7.86 0.6288
mode 28 8.52 0.0874
mode 29 8.56 0.3367
mode 30 8.96 0.4948
mode 31 9.10 0.2890
mode 32 9.41 0.2570
mode 33 9.58 0.3633
mode 34 9.69 0.3948
mode 35 9.89 0.4319
mode 36 9.96 0.5656
mode 37 10.17 0.2683
mode 38 10.35 0.3314
mode 39 10.59 0.4121
mode 40 10.83 0.5234
mode 41 10.92 0.3520
mode 42 11.09 0.4654
mode 43 11.18 0.4630
mode 44 11.45 0.3596
mode 45 11.48 0.2608
mode 46 11.58 0.2901
mode 47 11.68 0.2992
mode 48 11.89 0.5376
mode 49 12.09 0.2762
mode 50 12.23 0.4090
mode 51 12.32 0.5418
mode 52 12.42 0.4200
mode 53 12.68 0.2399
mode 54 12.81 0.2040
mode 55 12.92 0.5335
mode 56 13.08 0.5292
mode 57 13.15 0.2251
mode 58 13.25 0.3516
mode 59 13.38 0.3295
mode 60 13.53 0.2882
mode 61 13.79 0.4212
mode 62 13.99 0.5264
mode 63 14.15 0.5793
mode 64 14.29 0.2331
mode 65 14.47 0.4674
mode 66 14.64 0.6125
mode 67 14.79 0.5439
mode 68 14.98 0.4933
mode 69 15.23 0.4814
mode 70 15.43 0.3763
mode 71 15.52 0.3922
mode 72 15.67 0.4558
mode 73 15.70 0.4513
mode 74 15.82 0.4015
mode 75 15.91 0.5029
mode 76 16.01 0.3228
mode 77 16.21 0.5011
mode 78 16.26 0.2872
mode 79 16.48 0.4148
mode 80 16.63 0.4889
mode 81 16.73 0.4359
mode 82 16.85 0.2894
mode 83 16.96 0.1882
mode 84 17.07 0.3323
mode 85 17.11 0.5712
mode 86 17.20 0.4532
mode 87 17.34 0.2907
mode 88 17.55 0.4455
mode 89 17.68 0.5056
mode 90 17.72 0.3290
mode 91 17.81 0.3442
mode 92 17.93 0.2560
mode 93 18.13 0.4091
mode 94 18.33 0.3915
mode 95 18.43 0.3484
mode 96 18.49 0.2063
mode 97 18.60 0.5085
mode 98 18.70 0.3178
mode 99 18.76 0.2119
mode 100 18.83 0.4649
mode 101 18.89 0.3967
mode 102 19.14 0.3315
mode 103 19.26 0.4021
mode 104 19.33 0.3885
mode 105 19.35 0.4903
mode 106 19.48 0.3905

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.