CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***  Robetta04  ***

Normal Mode Analysis for ID 20122820011065309

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 2 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity
mode 7 1.00 0.2368
mode 8 1.06 0.0980
mode 9 1.49 0.3990
mode 10 1.53 0.0727
mode 11 1.59 0.3069
mode 12 1.73 0.2487
mode 13 1.92 0.1190
mode 14 1.99 0.2677
mode 15 2.02 0.2671
mode 16 2.18 0.3843
mode 17 2.25 0.3689
mode 18 2.38 0.2743
mode 19 2.49 0.3539
mode 20 2.51 0.1801
mode 21 2.58 0.2803
mode 22 2.61 0.2632
mode 23 2.66 0.3155
mode 24 2.75 0.3248
mode 25 2.80 0.3259
mode 26 2.91 0.3950
mode 27 2.94 0.1401
mode 28 3.04 0.3518
mode 29 3.10 0.3298
mode 30 3.22 0.2236
mode 31 3.27 0.2537
mode 32 3.29 0.1368
mode 33 3.38 0.3509
mode 34 3.41 0.2961
mode 35 3.49 0.3012
mode 36 3.51 0.4105
mode 37 3.57 0.4106
mode 38 3.65 0.4121
mode 39 3.69 0.2672
mode 40 3.76 0.4727
mode 41 3.81 0.3207
mode 42 3.89 0.4349
mode 43 3.93 0.3335
mode 44 3.97 0.0891
mode 45 4.00 0.3397
mode 46 4.02 0.2343
mode 47 4.06 0.3406
mode 48 4.07 0.0562
mode 49 4.16 0.2812
mode 50 4.19 0.2611
mode 51 4.21 0.3248
mode 52 4.25 0.5255
mode 53 4.29 0.2193
mode 54 4.33 0.3082
mode 55 4.39 0.3964
mode 56 4.47 0.3079
mode 57 4.47 0.3089
mode 58 4.51 0.1751
mode 59 4.54 0.3042
mode 60 4.61 0.2911
mode 61 4.62 0.4511
mode 62 4.64 0.4411
mode 63 4.66 0.3768
mode 64 4.69 0.2834
mode 65 4.76 0.4314
mode 66 4.78 0.4101
mode 67 4.80 0.1275
mode 68 4.82 0.2373
mode 69 4.86 0.3010
mode 70 4.87 0.4462
mode 71 4.90 0.4185
mode 72 4.92 0.5619
mode 73 4.96 0.3760
mode 74 5.00 0.3293
mode 75 5.05 0.4604
mode 76 5.07 0.2910
mode 77 5.08 0.3961
mode 78 5.10 0.3710
mode 79 5.15 0.1491
mode 80 5.19 0.4079
mode 81 5.21 0.3791
mode 82 5.24 0.4016
mode 83 5.26 0.3648
mode 84 5.30 0.2544
mode 85 5.32 0.3444
mode 86 5.32 0.1864
mode 87 5.37 0.3691
mode 88 5.39 0.4053
mode 89 5.41 0.3662
mode 90 5.43 0.2981
mode 91 5.44 0.3807
mode 92 5.52 0.4810
mode 93 5.52 0.4705
mode 94 5.55 0.5133
mode 95 5.56 0.4040
mode 96 5.59 0.2957
mode 97 5.60 0.3221
mode 98 5.60 0.3514
mode 99 5.62 0.3197
mode 100 5.64 0.3728
mode 101 5.67 0.3762
mode 102 5.67 0.3517
mode 103 5.69 0.3860
mode 104 5.73 0.2608
mode 105 5.74 0.3665
mode 106 5.76 0.3353

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.