CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***  4FF6  ***

Normal Mode Analysis for ID 201226195629118096

conformational change will be analysed

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 3 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

WARNING: Rotation-translation modes have a cumulative overlap of 0.5430 !!! This probably means that the second conformation was not fitted properly onto the first one.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity cumulative overlap amplitude (dq)
mode 7 1.00 0.0494 0.000 21.9626
mode 8 1.78 0.0729 0.002 132.8149
mode 9 2.31 0.3267 0.007 192.3317
mode 10 2.53 0.0413 0.012 -122.9093
mode 11 2.65 0.4655 0.014 -152.0494
mode 12 3.21 0.3217 0.054 -503.8202
mode 13 3.49 0.4967 0.070 -310.2334
mode 14 3.66 0.4460 0.070 -28.1396
mode 15 4.12 0.5030 0.073 -94.4081
mode 16 4.20 0.3547 0.073 -0.4996
mode 17 4.51 0.5974 0.077 177.4634
mode 18 4.67 0.3995 0.084 -231.3160
mode 19 4.84 0.4841 0.084 -0.2581
mode 20 4.93 0.3021 0.112 -421.9332
mode 21 5.07 0.5047 0.131 -343.2665
mode 22 5.22 0.3070 0.169 475.7484
mode 23 5.63 0.6688 0.180 286.8789
mode 24 5.69 0.4316 0.183 89.6509
mode 25 5.80 0.4065 0.222 -503.7302
mode 26 5.95 0.6602 0.487 1288.8472
mode 27 6.28 0.3281 0.489 102.5497
mode 28 6.47 0.4453 0.541 -576.0433
mode 29 6.63 0.3381 0.550 230.5122
mode 30 6.67 0.4552 0.559 -242.8674
mode 31 6.81 0.3090 0.559 61.8307
mode 32 6.87 0.4663 0.623 -636.1950
mode 33 6.99 0.4445 0.625 105.1028
mode 34 7.14 0.5228 0.625 23.3588
mode 35 7.34 0.6260 0.632 218.9234
mode 36 7.49 0.3672 0.634 -41.7967
mode 37 7.61 0.4000 0.644 265.8549
mode 38 7.70 0.5239 0.646 -102.9301
mode 39 7.73 0.5365 0.651 -149.0371
mode 40 7.82 0.4012 0.665 312.5552
mode 41 7.94 0.3302 0.674 -229.3338
mode 42 8.19 0.4638 0.676 -147.3159
mode 43 8.27 0.4379 0.683 210.1619
mode 44 8.34 0.5765 0.700 -314.0257
mode 45 8.42 0.5750 0.737 482.0142
mode 46 8.46 0.5218 0.737 94.6782
mode 47 8.55 0.3659 0.740 124.3106
mode 48 8.65 0.4868 0.742 -31.4327
mode 49 8.73 0.4804 0.744 158.2785
mode 50 8.86 0.2796 0.747 96.3256
mode 51 8.88 0.4803 0.772 401.8448
mode 52 9.03 0.6000 0.789 322.9898
mode 53 9.12 0.4447 0.794 -191.7398
mode 54 9.16 0.2566 0.794 3.9797
mode 55 9.20 0.4685 0.794 -37.8025
mode 56 9.35 0.4638 0.796 105.0206
mode 57 9.43 0.4053 0.815 -329.0597
mode 58 9.53 0.4137 0.815 77.6085
mode 59 9.55 0.3801 0.815 -21.2892
mode 60 9.62 0.1676 0.817 -90.6069
mode 61 9.70 0.4426 0.822 -202.0751
mode 62 9.75 0.4089 0.822 -3.1409
mode 63 9.82 0.5350 0.824 77.3866
mode 64 9.87 0.4122 0.824 87.3454
mode 65 10.01 0.4180 0.824 17.9991
mode 66 10.05 0.5328 0.829 -170.1653
mode 67 10.17 0.5860 0.833 -148.3381
mode 68 10.29 0.4807 0.836 -137.7792
mode 69 10.29 0.5074 0.847 -268.7471
mode 70 10.36 0.4726 0.850 -117.6038
mode 71 10.50 0.5454 0.857 216.2028
mode 72 10.53 0.4775 0.857 3.2163
mode 73 10.58 0.3656 0.857 12.3608
mode 74 10.67 0.5825 0.857 45.7916
mode 75 10.69 0.4009 0.857 33.4135
mode 76 10.74 0.3218 0.859 -92.2849
mode 77 10.83 0.3800 0.859 -40.6608
mode 78 10.84 0.3885 0.859 15.4700
mode 79 10.91 0.3599 0.861 -122.0068
mode 80 11.00 0.3708 0.866 151.2246
mode 81 11.09 0.3585 0.866 -3.4248
mode 82 11.14 0.4156 0.866 -55.9334
mode 83 11.16 0.4443 0.880 -300.7525
mode 84 11.20 0.4228 0.901 -375.0294
mode 85 11.21 0.3257 0.911 -224.2824
mode 86 11.33 0.4516 0.913 136.2392
mode 87 11.38 0.4675 0.913 9.3838
mode 88 11.43 0.4599 0.913 25.1909
mode 89 11.47 0.4558 0.915 112.0590
mode 90 11.50 0.5266 0.915 -80.8779
mode 91 11.59 0.4542 0.918 -94.1459
mode 92 11.60 0.4886 0.922 162.8059
mode 93 11.75 0.4135 0.922 89.3438
mode 94 11.79 0.4002 0.925 -124.9217
mode 95 11.85 0.4659 0.927 -101.2850
mode 96 11.90 0.4892 0.927 26.0210
mode 97 11.92 0.5238 0.927 61.2679
mode 98 12.00 0.4724 0.932 -131.5251
mode 99 12.01 0.3514 0.932 10.3083
mode 100 12.07 0.4408 0.934 156.0601
mode 101 12.17 0.5557 0.941 -193.6643
mode 102 12.19 0.4479 0.941 -2.0190
mode 103 12.20 0.3894 0.941 73.6057
mode 104 12.25 0.5554 0.946 -182.5020
mode 105 12.33 0.4501 0.946 -3.1855
mode 106 12.42 0.4502 0.948 -23.9765

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.