CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***  4fdo v/s 4p8l  ***

Normal Mode Analysis for ID 20122614375822011

conformational change will be analysed

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 1 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

WARNING: Rotation-translation modes have a cumulative overlap of 0.8470 !!! This probably means that the second conformation was not fitted properly onto the first one.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity cumulative overlap amplitude (dq)
mode 7 1.00 0.3714 0.000 -17.8580
mode 8 1.02 0.4960 0.014 198.6894
mode 9 1.28 0.0912 0.021 158.9839
mode 10 1.33 0.5039 0.028 -46.8125
mode 11 1.39 0.4795 0.035 136.4854
mode 12 1.52 0.3098 0.084 -350.3521
mode 13 1.61 0.5106 0.112 -246.9049
mode 14 1.67 0.7592 0.273 -609.5760
mode 15 1.71 0.7229 0.273 -26.4474
mode 16 1.85 0.3792 0.287 168.3322
mode 17 1.92 0.4651 0.315 -260.8927
mode 18 1.99 0.6346 0.329 172.8008
mode 19 2.06 0.6489 0.427 -478.7319
mode 20 2.08 0.5481 0.505 429.4034
mode 21 2.15 0.2184 0.505 60.6387
mode 22 2.17 0.3505 0.519 -197.5809
mode 23 2.23 0.3489 0.533 142.8958
mode 24 2.29 0.2063 0.533 82.0621
mode 25 2.30 0.5413 0.540 -102.1931
mode 26 2.35 0.4017 0.540 76.6252
mode 27 2.42 0.5406 0.596 347.8443
mode 28 2.44 0.4397 0.596 -27.9144
mode 29 2.52 0.3936 0.617 -225.9854
mode 30 2.56 0.3803 0.645 -255.6142
mode 31 2.58 0.5693 0.645 -22.4281
mode 32 2.63 0.5656 0.645 67.8519
mode 33 2.67 0.6211 0.652 129.8498
mode 34 2.71 0.4086 0.652 -56.2983
mode 35 2.77 0.4655 0.652 -2.9916
mode 36 2.81 0.4891 0.659 -89.0914
mode 37 2.85 0.4202 0.659 93.5322
mode 38 2.86 0.5401 0.659 -45.8134
mode 39 2.89 0.4777 0.680 185.6198
mode 40 2.91 0.5534 0.680 116.9264
mode 41 2.93 0.5801 0.771 450.1219
mode 42 2.96 0.4780 0.771 -70.8666
mode 43 2.97 0.4759 0.778 -87.0335
mode 44 3.03 0.5930 0.778 115.9306
mode 45 3.06 0.4612 0.792 -162.6663
mode 46 3.09 0.4238 0.792 33.0009
mode 47 3.11 0.3992 0.792 -45.6715
mode 48 3.16 0.4814 0.806 -183.7948
mode 49 3.19 0.4614 0.806 -28.6173
mode 50 3.23 0.4281 0.806 -40.3845
mode 51 3.27 0.3971 0.806 -34.3197
mode 52 3.29 0.5824 0.806 -13.4771
mode 53 3.30 0.3876 0.813 123.0760
mode 54 3.35 0.5405 0.841 257.0085
mode 55 3.39 0.5205 0.855 146.1900
mode 56 3.43 0.4566 0.855 -55.8233
mode 57 3.45 0.5033 0.855 40.7451
mode 58 3.47 0.5642 0.876 222.3729
mode 59 3.51 0.5505 0.876 -11.2106
mode 60 3.53 0.5675 0.876 75.4603
mode 61 3.56 0.5435 0.890 140.7854
mode 62 3.59 0.5329 0.890 -82.0751
mode 63 3.64 0.6325 0.890 -9.2049
mode 64 3.65 0.5276 0.890 75.2476
mode 65 3.68 0.4789 0.897 -74.3383
mode 66 3.70 0.5734 0.911 180.4236
mode 67 3.72 0.4861 0.911 39.5770
mode 68 3.76 0.5687 0.911 -41.0587
mode 69 3.77 0.3868 0.911 93.2294
mode 70 3.81 0.4887 0.918 -112.1152
mode 71 3.83 0.4587 0.925 126.7256
mode 72 3.84 0.4192 0.932 111.2505
mode 73 3.85 0.4833 0.946 175.7156
mode 74 3.89 0.4893 0.946 18.8025
mode 75 3.91 0.5270 0.946 -43.3235
mode 76 3.93 0.5017 0.946 -32.3370
mode 77 3.95 0.5139 0.946 55.1590
mode 78 3.97 0.5963 0.953 -82.3256
mode 79 3.99 0.5071 0.960 -146.0128
mode 80 4.01 0.5125 0.960 57.8338
mode 81 4.03 0.5072 0.960 9.4321
mode 82 4.05 0.5052 0.960 60.4827
mode 83 4.07 0.5667 0.960 -9.2305
mode 84 4.10 0.5211 0.960 -15.5029
mode 85 4.13 0.5282 0.960 31.4762
mode 86 4.15 0.5326 0.967 72.4937
mode 87 4.16 0.4465 0.967 78.0892
mode 88 4.17 0.4820 0.967 15.7305
mode 89 4.20 0.5878 0.967 0.7972
mode 90 4.23 0.4330 0.967 6.6708
mode 91 4.25 0.3731 0.967 -63.3950
mode 92 4.27 0.3033 0.974 48.2200
mode 93 4.28 0.4068 0.974 -89.2221
mode 94 4.30 0.4321 0.974 41.3104
mode 95 4.32 0.4052 0.974 5.3169
mode 96 4.33 0.4257 0.974 -6.0974
mode 97 4.35 0.2965 0.974 -72.3823
mode 98 4.37 0.2691 0.981 17.7018
mode 99 4.38 0.5115 0.981 -86.9838
mode 100 4.39 0.4854 0.981 -46.8894
mode 101 4.40 0.3965 0.981 75.3361
mode 102 4.42 0.4867 0.988 -38.1675
mode 103 4.43 0.5807 0.988 11.5689
mode 104 4.46 0.4334 0.988 47.7177
mode 105 4.49 0.5060 0.988 -7.4839
mode 106 4.50 0.4924 0.988 -27.5657

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.