CNRS Nantes University UFIP UFIP
home |  start a new run |  job status |  references&downloads |  examples |  help  

Should you encounter any unexpected behaviour,
please let us know.


***  4P8H  ***

Normal Mode Analysis for ID 2012260726487193

The following table indicates for every normal mode its frequency (black, normalized relative to the lowest mode frequency) and its collectivity (magenta). If a second structure was submitted, the cummulative overlap between the normal modes and the conformational change is computed (red). The corresponding amplitude (dq) is then also given (green). Click on the mode link to obtain a visualization of the mean square displacement <R2> of the C-alpha atoms associated to each mode.

WARNING: there are 1 low-collectivity modes among your first 5 modes (see below)! The degree of collectivity indicates the fraction of residues that are significantly affected by a given mode. While low-frequency modes are expected to have collective character, computed ones sometimes happen to be localized. In such cases, they correspond to motions of some extended parts of the system, as often observed in crystallographic protein structures for N- and C-termini.

[HELP on collectivity] [HELP on overlap]

<R2> frequency collectivity
mode 7 1.00 0.3032
mode 8 1.32 0.2426
mode 9 1.35 0.0404
mode 10 1.45 0.2095
mode 11 1.65 0.3120
mode 12 1.84 0.3281
mode 13 1.89 0.3595
mode 14 2.05 0.3972
mode 15 2.10 0.4927
mode 16 2.26 0.2030
mode 17 2.35 0.2561
mode 18 2.40 0.6537
mode 19 2.51 0.5236
mode 20 2.57 0.3559
mode 21 2.64 0.4606
mode 22 2.68 0.1323
mode 23 2.71 0.3476
mode 24 2.76 0.3844
mode 25 2.91 0.3980
mode 26 2.97 0.1793
mode 27 3.03 0.2456
mode 28 3.13 0.4090
mode 29 3.14 0.1124
mode 30 3.21 0.3208
mode 31 3.24 0.3828
mode 32 3.29 0.4013
mode 33 3.32 0.2519
mode 34 3.39 0.3672
mode 35 3.41 0.4011
mode 36 3.49 0.3072
mode 37 3.56 0.4766
mode 38 3.60 0.3708
mode 39 3.74 0.4075
mode 40 3.76 0.4608
mode 41 3.83 0.3869
mode 42 3.87 0.4808
mode 43 3.89 0.1799
mode 44 3.96 0.2736
mode 45 3.96 0.4463
mode 46 4.00 0.4423
mode 47 4.15 0.3819
mode 48 4.16 0.3979
mode 49 4.17 0.2944
mode 50 4.26 0.3136
mode 51 4.26 0.5189
mode 52 4.31 0.5707
mode 53 4.37 0.4216
mode 54 4.46 0.4514
mode 55 4.49 0.5213
mode 56 4.60 0.4038
mode 57 4.63 0.5399
mode 58 4.66 0.3792
mode 59 4.68 0.3749
mode 60 4.74 0.4720
mode 61 4.77 0.4320
mode 62 4.83 0.3428
mode 63 4.85 0.3260
mode 64 4.91 0.4977
mode 65 4.93 0.3195
mode 66 4.94 0.4117
mode 67 5.03 0.4801
mode 68 5.06 0.4910
mode 69 5.08 0.3372
mode 70 5.13 0.4294
mode 71 5.17 0.5000
mode 72 5.19 0.4187
mode 73 5.23 0.4689
mode 74 5.26 0.4514
mode 75 5.28 0.3591
mode 76 5.35 0.4976
mode 77 5.39 0.3940
mode 78 5.42 0.2999
mode 79 5.43 0.4705
mode 80 5.51 0.2065
mode 81 5.54 0.4743
mode 82 5.58 0.5356
mode 83 5.62 0.4258
mode 84 5.64 0.3920
mode 85 5.66 0.4535
mode 86 5.67 0.5499
mode 87 5.71 0.4125
mode 88 5.73 0.4238
mode 89 5.76 0.4480
mode 90 5.79 0.3640
mode 91 5.83 0.4269
mode 92 5.88 0.4705
mode 93 5.90 0.4542
mode 94 5.95 0.5222
mode 95 5.97 0.4659
mode 96 5.98 0.3633
mode 97 6.00 0.3950
mode 98 6.05 0.3584
mode 99 6.08 0.4066
mode 100 6.11 0.4618
mode 101 6.13 0.4723
mode 102 6.15 0.4652
mode 103 6.20 0.3461
mode 104 6.21 0.3071
mode 105 6.24 0.5250
mode 106 6.26 0.4917

If you find results from this site helpful for your research, please cite one of our papers:

elNémo is maintained by Yves-Henri Sanejouand.
It was developed by Karsten Suhre.
Between 2003 and 2014, it was hosted by IGS (Marseille).
Last modification: October 18th, 2018.