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ABSTRACT Normal mode analysis of proteins
of various sizes, ranging from 46 (crambin) up to 858
residues (dimeric citrate synthase) were performed,
by using standard approaches, as well as a recently
proposed method that rests on the hypothesis that
low-frequency normal modes of proteins can be
described as pure rigid-body motions of blocks of
consecutive amino-acid residues. Such a hypothesis
is strongly supported by our results, because we
show that the latter method, named RTB, yields
very accurate approximations for the low-frequency
normal modes of all proteins considered. Moreover,
the quality of the normal modes thus obtained de-
pends very little on the way the polypeptidic chain
is split into blocks. Noteworthy, with six amino-
acids per block, the normal modes are almost as
accurate as with a single amino-acid per block. In
this case, for a protein of n residues and N atoms, the
RTB method requires the diagonalization of an n 3
n matrix, whereas standard procedures require the
diagonalization of a 3N 3 3N matrix. Being a fast
method, our approach can be useful for normal
mode analyses of large systems, paving the way for
further developments and applications in contexts
for which the normal modes are needed frequently,
as for example during molecular dynamics calcula-
tions. Proteins 2000;41:1–7. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Since the early 1980s, normal mode analysis has proved
to be useful for studying collective motions of biological
macromolecules.1–3 Noteworthy, it has been shown that
some of the lowest-frequency normal modes of several
proteins are strongly correlated with the large amplitude
conformational change of these proteins observed upon
ligand binding.4–10 Also, the corresponding normal mode
coordinates have been used to study domain motions in
proteins,11–13 to analyze molecular dynamics trajectories
through the quasi-harmonic approximation,14 or to inte-
grate the equations of atomic motion with large time-
steps.15,16

Thus, it is now clear that normal coordinates form a
well-suited coordinate reference system for studying the
properties of the potential energy surface of proteins.

However, until recently, it was not feasible to perform a
normal mode analysis for proteins of more than approxi-
mately 150 amino acids with an all-atom model, or to
approximately 200 amino acids by using a united atom
description in which hydrogens bound to carbon are not
explicitly represented, that is, when 3N, the number of
degrees of freedom of the system, is larger than 5,000–
6,000,17 the limiting phase being the numeric diagonaliza-
tion of a matrix of size 3N 3 3N. Recent progresses in the
methodology have allowed this limitation to be over-
come,9,10 and it is now possible to perform such an analysis
for proteins as large as the largest ones presently found in
the Brookhaven protein data bank18 (see below).

To date, two different approaches have been successfully
used to compute low-frequency normal modes of large
proteins at the atomic level. The first one makes use of a
very efficient block Lanczos algorithm.9 This algorithm, as
implemented in the BLZPACK program package, for ex-
ample, allowed the calculation of the 10 lowest-frequency
normal modes of the closed form of dimeric citrate syn-
thase (3N 5 25,584), with 20 minutes of CPU time on a
Cray C90.9 However, in the present state of this package,
such a calculation can be performed only when the matrix
to be diagonalized is quite sparse, because a computer
memory larger than 10 times the number of nonzero
matrix elements may be required. With the second method,
called DIMB,10,19 implemented in the CHARMM pack-
age20 since version 24, systems as large as the aspartate
transcarbamylase (3N 5 79,758) can be studied.21 How-
ever, the corresponding process is quite slow. For instance,
to compute the 197 lowest-frequency normal modes of
phosphoglycerate kinase (3N 5 11,529), 4.4 hours of CPU
time on a Cray C98 are required.22 In the present work, we
show that it is possible to obtain very accurate approxima-
tions of the low-frequency normal modes of large systems,
by using small amounts of CPU time on common kinds of
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workstations. The method used is the first step of a method
described in a previous work, in which only small test
cases had been examined.23 In this approach, hereafter
called RTB (rotations-translations of blocks), the protein is
divided into nb blocks, a block being made of one or of a few
consecutive residues. Then, the lowest-frequency normal
modes of the protein are obtained as a linear combination
of the rotations and translations of these blocks.

From a practical point of view, a new code has been
developed that avoids the storage of the whole Hessian
matrix and paves the way for the determination of approxi-
mate normal modes of very large biomolecules.

METHODS
RTB Versus Standard Approaches

In standard approaches, the normal modes of a system
are obtained through the diagonalization of the Hessian
matrix H, that is, the 3N 3 3N matrix of the second-
derivatives of the potential energy with respect to the
mass-weighted coordinates, where N is the number of
atoms of the system.24,25 In the RTB approach, H is first
expressed in a basis defined by the rotations and translations
of nb blocks, Hb, the projected Hessian, being given by:

Hb 5 PtHP

where P is an orthogonal 3N 3 6nb matrix built with the
vectors associated with the local rotations and translations
of each block.23 Approximate low-frequency normal modes
of the system, thus, are obtained by diagonalizing Hb, a
matrix of size 6nb 3 6nb, the corresponding (3N) atomic
displacements being obtained as:

Ap 5 PAb

where Ab is the matrix of the eigenvectors of Hb.
As previously emphasized, the final objective is the

treatment of huge macromolecules. This is achieved by a
direct approach, implemented in a newly developed code,
which borrows some ideas from the adiabatic-diabatic
transformation needed for the vibronic treatment of small
molecules26 and proceeds in three steps. In the first step,
the blocks of residues are defined and the six rotation-
translation modes of each block, Ui, are determined and
stored. These 6nb vectors form the new basis of small
dimension that corresponds to the projector P. In the
second step, the Hessian matrix is expressed in this new
basis, separately for each coupling or diagonal block, Hij

Hij
b 5 Ui

tHijUj

The set of nb
2 Hij

b block-matrices forms the matrix Hb. Thus,
only the small dimension vectors Ui and the small 6nb 3
6nb Hb matrix have to be stored. In the last step, Hb is
diagonalized with standard methods. Hereafter, this was
done either with BLZPACK or with the DIAGQ routine
available in the VIBRAN module of the CHARMM pack-
age.

Comparison of Two Sets of Normal Modes

A normal mode, aW j, obtained with a standard approach,
can be expressed as a linear combination of the 6nb

approximate normal modes aWk obtained with the RTB
approach. Then, a value close to one for, Pj with:

Pj 5 O
k 5 1

6nb

cjk
2 (1)

where cjk 5 aW j.aWk
p, means that the j-th normal mode, aW j, can

be perfectly described in the subspace considered within
the frame of the RTB approach.

Normal Mode Analysis Versus Experimental Data
Atomic fluctuations

The atomic fluctuations are obtained from a normal
mode analysis as25:

^xi
2& 5

kBT
mi

O
j 5 1

nv aij
2

vj
2 (2)

where xi is the atomic coordinate i, mi, its mass, nv, the
number of modes considered, vj 5 vj /2p the frequency of
normal mode j, and aij the corresponding coordinate dis-
placement. For most proteins, accurate values of ^xi

2& can
be obtained with their 30 lowest-frequency normal modes
(nv 5 30). Indeed, it has been shown that low-frequency
normal modes of proteins, with frequencies under 30 cm21,
are responsible for most of their atomic displace-
ments.5,27,28

Overlap

To quantify how a given normal mode, aW j, compares with
an experimentally known conformational change, DrW 5 rWo

2 rWc, the overlap between the two corresponding vectors
can be calculated as9,29:

uaW j z DrWu 5
uO aij~ri

0 2 ri
c!u

ÎO aij
2 O ~ri

0 2 ri
c!2

(3)

where ri
o and ri

c are, respectively, the atomic coordinate i in
conformations “o” and “c” of the protein, after both were
superimposed. An overlap of one would mean that both
kinds of collective atomic displacements occur along ex-
actly the same direction of the configurational space.

RESULTS AND DISCUSSION

Standard and RTB normal mode analyses of proteins of
various sizes (46 up to 858 residues; see Table I) have been
carried out, after a preliminary energy minimization per-
formed with the CHARMM package,20 by using extended
atoms, the PARAM19 force field, a dielectric constant of 1,
a shifting function for electrostatics and a switching
function between 6.5 and 8.5Å for the Lennard-Jones
interactions. The minimization process was stopped at a
gradient root-mean-square (RMS) value of 1026 kcal/
(mole.Å); RMS deviations of the Ca atoms from the crystal-
lographic structure are given in Table I. Then, H was
computed with the VIBRAN module of CHARMM. Next,
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following standard approaches, H was either diagonalized
with BLZPACK, when the number of amino acids of the
protein was less than 250 or by using the iterative
diagonalization in a mixed basis (DIMB) method imple-
mented in CHARMm 24 otherwise. In the latter case, the
iterative process was stopped when the convergence crite-
rion for the eigenvectors reached 0.05.10

Finally, the results obtained with such standard diago-
nalization methods were compared with those obtained
with the RTB approach, by using 1, 2, 3, 5, or more,
residues per block, that is, when H is first projected into a
subspace defined by the rotations and translations of a set
of nb blocks, the projected Hessian, Hb being diagonalized
with standard algorithms.

In Figure 1, nb, the frequencies obtained as a result of the
diagonalization of Hb are compared with ns, the frequen-
cies obtained with standard approaches. A linear relation-
ship is observed, for frequencies up to at least 40 cm21,
namely:

nb 5 dp z ns (4)

with dp 5 1.7 6 0.1. That dp is larger than 1 means that
the protein potential energy surface is stiffer in the
subspace considered within the framework of our approxi-
mation, that is, when each amino acid is assumed to
behave like a rigid body. The surprising observation is that
dp does not seem to depend on the protein size. This finding
suggests that, in the case of the low-frequency normal
modes of proteins, the slight deformations experienced by
the amino acids during these motions are a consequence of
local constraints, nearly identical on average. This is an
appealing result, because it allows to use Eq. (4) to
estimate rather accurately the exact frequency of a normal
mode, once the approximate value is known. However, as
shown in Figure 2 in the case of adenylate kinase, when Hb

is calculated with five residues per block, the linear
relationship observed in Figure 1 does not hold. This latter
result is likely to be a consequence of the fact that F, C
dihedral motions inside each block are not represented,

although with dp 5 3.0 relation (4) still yields quite
accurate estimates of ns for frequencies lower than 10
cm21, as can be verified when proteins of various sizes are
considered (data not shown). Note also that dp seems to
increase linearly, as a function of the number of residues
per block. Indeed, dp is nearly equal to 1.7, 2.1, 2.4, and
3.0, when each block contains 1, 2, 3, or 5 residues,
respectively.

In Figure 3, the RMS fluctuations of the Ca atoms of
adenylate kinase are shown, as calculated with standard
or RTB normal mode analysis, when the 30 lowest-

TABLE I. Preliminary Energy Minimization of the
Proteins Considered in This Work: Ca Root Mean Square

Deviation (Å) From the Crystallographic Structure

Protein Pdb code
Number of
residues

RMS
deviation

Crambin 1ccn 46 1.4
BPTI 5pti 58 1.1
HIV-1 protease 1hhp 99 1.7
Che Y protein 3chy 128 0.9
CD4 3cd4 178 1.7
Adenylate kinase 1aky 218 1.9
TIM 3tim 250 1.6
Triglyceride lipase 3tgl 265 1.3
Tyrosine phosphatase 1ypt 278 1.2
Alcool dehydrogenase 8adh 373 1.3
Enolase 3enl 436 1.3
Citrate synthase 5csc 858a 1.9
aThe dimeric form was considered.

Fig. 1. Approximate frequencies calculated with the RTB approach,
each block containing a single amino acid, as a function of the frequencies
calculated with standard approaches. Proteins of various sizes were
considered (see Table I): crambin (filled triangles), HIV-1 protease (open
circles), adenylate kinase (open triangles), triglyceride lipase (open
squares), alcohol dehydrogenase (crosses) and enolase (filled dia-
monds). For the sake of clarity, only some of the approximate values
corresponding to exact frequencies calculated in the 10–20 cm21 range
are shown.

Fig. 2. Approximate frequencies calculated with the RTB approach,
as a function of the frequencies calculated with standard approaches, in
the case of adenylate kinase. The approximate frequencies were calcu-
lated by using one (filled triangles; bottom), two (open triangles), three
(reverse triangles), or five (diamonds; top) amino acids per block.
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frequency normal modes are considered (Eq. 2). Because in
such calculations the weight of each normal mode is
proportional to 1/n, relation (4) was used to adjust the
frequencies obtained with the RTB approach. As evidenced
in Figure 3, the fluctuations calculated with standard and
RTB normal mode analysis are highly correlated. In Table
II, the corresponding correlation coefficient is given (0.93),
as well as those obtained for several other proteins, when
the RTB method is used with one residue per block. These
coefficients have all quite high values, ranging between
0.84 and 0.96. As shown in Figure 3, for adenylate kinase,
and in Table III, for two other proteins, high values are
also obtained when the RTB method is used with blocks
containing 2, 3, or 5 amino acids, although a slight
decrease of these coefficients is observed in the latter case.
Note that the way the polypeptide chain is split into blocks
does not seem to matter much as far as such correlations
are concerned. For instance, as shown in Table IV for
adenylate kinase, results obtained are very similar,
whether the peptidic bond is entirely included or not in the

residue definition, as well as when the splitting is done
according to the known distribution of secondary structure
elements or not. In the former case, each secondary
structure element is put in a block, each residue lying
outside the secondary structure elements being put in its
own block, whereas in the latter case, stretches of residues
of the same length are put in the same number of blocks,
but these stretches are randomly chosen.

These results suggest that the subspace considered
within the framework of the RTB method captures, on
average, most of the atomic displacements involved in the
low-frequency normal mode motions of proteins. Figure 4
shows that, in the case of the HIV-1 protease, each
low-frequency normal mode, as obtained with standard
approaches, is also very well described in this subspace, at
least for modes with frequencies under 20–40 cm21. This
result is in agreement with previous molecular dynamics
and normal mode studies of myoglobin for which it was
shown that both diffusional and vibrational motions with
frequencies under 60 cm21 can be very well described by a
rigid side-chain model.30,31

In Table V, the overlap between the conformational
change of adenylate kinase upon substrate binding and
each of its lowest frequency normal modes is shown (see
eq. 3), the normal modes being obtained with either
standard or RTB normal mode analysis. In both cases, the
overlap of the mode the most “ involved ” in the conforma-
tional change29 is underlined. When the RTB approach is
used with blocks containing 1, 2, 3, or 5 residues, the value
of this overlap (0.53–0.60) is found to be at least as large as
when the standard approach is used (0.53), even though
the rank of the corresponding mode is not the same. This

Fig. 3. Root mean square fluctuations of the Ca atoms of adenylate
kinase, calculated with standard (plain line) or RTB normal mode analysis,
when the 30 lowest-frequency normal modes are taken into account, the
RTB approach being used with one (broken line) or five (dotted line)
amino acid(s) per block. The temperature was set to 300°K.

TABLE II. Correlation Between the Ca Root Mean Square
Fluctuations, as Calculated According to Normal Mode

Theory, When the Standard or When the RTB Approach Is
Used, With One Residue per Block

Protein Correlation

Crambin 0.93
BPTI 0.93
HIV-1 protease 0.88
Che Y protein 0.85
CD4 0.96
Adenylate kinase 0.93
TIM 0.88
Triglyceride lipase 0.84
Tyrosine phosphatase 0.95
Alcool dehydrogenase 0.86
Enolase 0.88

TABLE III. Correlation Between the Ca Root Mean Square
Fluctuations, as Calculated According to Normal Mode

Theory, When the Standard or When the RTB Approach Is
Used, With Different Partitionings

Protein

Number of residues per block

1 2 3 5

HIV-1 protease 0.88 0.90 0.85 0.74
Adenylate kinase 0.93 0.93 0.92 0.88
Alcohol dehydrogenase 0.86 0.83 0.82 0.79

TABLE IV. Correlation Between the Ca Root Mean Square
Fluctuations of Adenylate Kinase, as Calculated According
to Normal Mode Theory, When the Standard or When the

RTB Approach Is Used, With Different Partitionings

Number of blocks Nb of residues per block Correlation

218 1 0.93
218a 1a 0.94
44 5 0.88
40b 1–14b 0.87
40c 1–14c 0.89
37 6 0.86

aThe peptidic bond following each residue is included in each block.
bEach secondary structure element is put in a block.
cBlocks of same length, but randomly distributed along the polypep-
tidic chain.
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finding means that the RTB approach can slightly modify
the ranking of the normal modes. Such a phenomenon was
already noticed in our previous study of small test cases,23

several avoided crossings being observed during the refine-
ment process of the approximate modes obtained with the
RTB method, even for a system as small as the decaala-
nine. However, this latter result is not a general one. For
instance, in the case of the two N-terminal domains of
CD4, when the three low-frequency normal modes calcu-
lated with the standard and with the RTB approach are
compared, a one-to-one correspondence is observed, the
overlap of the first (lowest-frequency) modes being 0.98, of
the second ones, 0.99, and of the third ones, 0.98. In such a
case, the RTB method is indeed expected to be very
efficient, because the three lowest frequency normal modes
of CD4 have been shown to be almost pure rigid-body
motions of one domain with respect to another.32,33

In Figure 5, the conformational change of citrate syn-
thase upon substrate binding is shown, as observed when

crystal structures 5csc (open form) and 6csc (closed form)
are superimposed.34 In this case, the third lowest-
frequency normal mode of the open form, as calculated
with the RTB approach, is a collective motion looking
strikingly similar to the conformational change, the over-
lap between these two motions ranging between 0.82 and
0.85, when 1, 2, 5, or 6 residues are gathered in each block
(see Fig. 5; Table VI). When each secondary structure
element is placed in its own block, each residue lying
outside the secondary structures being placed in one block,
the value of this overlap drops significantly, down to 0.75,
but it is still a quite high value, larger than those obtained
for adenylate kinase (see Table V), as well as larger than
the value found in a previous normal mode study, namely
0.49, starting from a closed form.9 Note that, here also,
results of the same quality are obtained when stretches of
residues of the same length than the secondary structure
elements, but picked randomly along the sequence, are
placed in their own block, each residue lying outside these
stretches being placed in one block. From a practical point

Fig. 4. Quality of the best possible description, within the frame of the
RTB approach, of each low-frequency normal mode of the HIV-1 pro-
tease, as obtained with standard approaches. A value close to one for Pj

means that normal mode j can be perfectly described with our approach
[see Eq. (1)].

TABLE V. Overlap Between the Conformational Change of
Adenylate Kinase and Each of Its Lowest-Frequency

Normal Modes, as Calculated With the Standard or With
the RTB Method, With Different Partitionings†

Mode
number

Standard method

RTB method

Number of residues
per block

Frequency
(cm21) Overlap 1 2 3 5

1 3.0 0.32 0.58 0.60 0.53 0.60
2 3.4 0.48 0.37 0.41 0.48 0.44
3 4.7 0.25 0.21 0.14 0.12 0.27
4 4.8 0.53 0.23 0.26 0.29 0.02
5 5.0 0.17 0.37 0.23 0.26 0.12

†The overlap of the mode the most involved in the conformational
change, that is, the one with the largest overlap value, is underlined.

Fig. 5. Relative displacements of the Ca atoms of one monomer of
citrate synthase, as observed upon substrate binding (plain line), and as
obtained with the RTB approach, by using two (broken line) or five (dotted
line) residues per block, in the case of the third normal mode, that is, the
most involved one. Observed and calculated Ca displacements were
normalized so as to be of one unity for the largest one.

TABLE VI. Overlap Between the Conformational Change
of Citrate Synthase and Its Most Involved Low-Frequency
Normal Mode, as Calculated With the RTB Method, With

Different Partitionings

Number of blocks Nb of residues per block
Overlap

(mode number)

858 1 0.85 (3)
429 2 0.85 (3)
172 5 0.84 (3)
149a 1–27a 0.75 (3)
149b 1–27b 0.74 (3)
143 6 0.82 (3)

aEach secondary structure element is put in a block.
bBlocks of same length, but randomly distributed along the polypep-
tidic chain.
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of view, such results, although not in agreement with the
intuition that motivated the initial developments of the
RTB method,23 are rather satisfactory because they sug-
gest that the way the partitioning of the protein into blocks
is performed has little qualitative consequences on the
description of its low-frequency normal modes. However,
the two proteins considered in details in the present study
are made of only two structural domains. In further works,
the case of multidomain proteins will be addressed.

CONCLUSION

The RTB method rests on the hypothesis that the
low-frequency normal modes of proteins, as obtained with
standard normal mode analysis, can be described as pure
rigid-body motions of blocks of consecutive amino-acid
residues.23 The results obtained during the present work
strongly support this hypothesis, because we have shown
that the RTB method yields very accurate approximations
for the low-frequency normal modes of proteins of various
sizes, various folds, etc.

Moreover, the RTB method is a very fast one. In Table
VII, a comparison with DIMB is shown, for two proteins
studied on a common HP workstation. In these cases,
performed with one residue per block, the RTB approach is
found to be 20–30 times faster than DIMB. Of course, it
can be much faster than that. Indeed, when two residues
are placed in each block, the 6nb 3 6nb matrix to be
diagonalized has exactly the same size as in methods
where only the Ca atoms are taken into account,12,13

whereas, when six residues are placed in each block, it has
the same size as in the fastest methods allowing for the
calculation of B-factors, within the frame of harmonic
analysis.35 As a consequence, very large systems can be
studied with all these methods, by using little CPU time
and little computer memory. Furthermore, in the RTB
method the potential energy function considered is the
same as in standard normal mode analysis; other fast
methods rest on highly simplified potential energy func-
tions, in the line of the single-parameter one proposed by
M. Tirion, in which all neighboring atoms are supposed to
be linked together.36 Also, the RTB method is the only
quick method yielding all-atom normal modes in a straight-
forward way.

Thus, the RTB method should prove useful for perform-
ing normal mode analysis of large systems. Moreover,
because it is a fast method, it can pave the way for the
development and application of methods in which the
normal modes and the corresponding normal mode coordi-
nates are calculated many times.
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grande amplitude de la décaalanine et du fragment C-terminal de
la proteine ribosomale L7/L12. Ph.D. thesis, Orsay (France), 1990.

16. Elezgaray J, Sanejouand YH. Modeling large-scale dynamics of
proteins. Biopolymers 1998;46:493–501.

17. Case D. Normal mode analysis of protein dynamics. Curr Opin
Struct Biol 1994;4:285–290.

18. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD,
Rodgers JR, Kennard O, Shimanouchi T, Tasumi M. The protein
data bank: a computer-based archival file for macromolecular
structures. J Mol Biol 1977;112:535–542.

19. Mouawad L, Perahia D. DIMB: diagonalization in a mixed basis. a
method to compute low-frequency normal modes for large macro-
molecules. Biopolymers 1993;33:569–611.

20. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan

TABLE VII. CPU Time Required for the Calculation of 50 Normal Modes on a HP Workstation, Using RTB With One
Residue per Block, or the Standard Method Available in CHARMM for Large Matrices, Namely, DIMB†

Protein

Standard method RTB method

Matrix size DIMB (min) Projection (min) Matrix size DIAGQ* (min) Total (min)

HIV-1 protease 2,766 30 0.6 594 0.9 1.5
Triglyceride lipase 7,491 515 3.6 1,590 14 17.6
†Note that DIMB yield exact normal modes.
*The projected matrix was diagonalized with the DIAGQ routine found in the VIBRAN module of CHARMM.

6 F. TAMA ET AL.



S, Karplus M. CHARMM: a program for macromolecular energy,
minimization, and dynamics calculations. J Comp Chem 1983;4:
187–217.

21. Thomas A, Field MJ, Mouawad L, Perahia D. Analysis of the low
frequency normal modes of the T-state of aspartate transcarbamy-
lase. J Mol Biol 1996;257:1070–1087.

22. Guilbert C, Pecorari F, Perahia D, Mouawad L. Low frequency
motions in phosphoglycerate kinase. a normal mode analysis.
Chem. Phys. 1995;204:327–336.

23. Durand P, Trinquier G, Sanejouand Y-H. A new approach for
determining low-frequency normal modes in macromolecules.
Biopolymers 1994;34:759–771.

24. Goldstein H. Classical mechanics. Reading, Mass: Addison Wes-
ley; 1950.

25. Brooks BR, Janezic D, Karplus M. Harmonic analysis of large
systems: I. Methodology. J Comp Chem 1995;16:1522–1542.

26. Gimperle F, Gadea FX. Beyond Born-Oppenheimer spectro-
scopic study of the C state of LiH. J Chem Phys 1999;110:11197–
11205.

27. Swaminathan S, Ichiye T, Van Gunsteren WF, Karplus M. Time
dependence of atomic fluctuations in proteins: analysis of local
and collective motions in bovine pancreatic trypsin inhibitor.
Biochemistry 1982;21:5230–5241.

28. Levy RM, Perahia D, Karplus M. Molecular dynamics of an
a-helical polypeptide: temperature dependence and deviation

from harmonic behavior. Proc Natl Acad Sci USA 1982;79:1346–
1350.

29. Ma J, Karplus M. Ligand-induced conformational changes in ras
p21: a normal mode and energy minimization analysis. J Mol Biol
1997;274:114–131.

30. Furois-Corbin S, Smith JC, Kneller GR. Picosecond timescale
rigid-helix and side-chain motions in deoxymyoglobin. Proteins
1993;16:141–154.

31. Kneller GR, Smith JC. Liquid-like side-chain dynamics in myoglo-
bin. J Mol Biol 1994;242:181–185.

32. Sanejouand YH. Normal-mode analysis suggests important flex-
ibility between the two N-terminal domains of CD4 and supports
the hypothesis of a conformational change in CD4 upon HIV
binding. Protein Eng 1996;9:671–677.

33. Sanejouand YH. Rôle du changement de conformation du CD4 lors
de la fusion VIH/cellule. C R Acad Sci 1997;320:163–170.

34. Liao DI, Karpusas M, Remington SJ. Crystal structure of an open
conformation of citrate synthase from chicken heart at 2.8-A
resolution. Biochemistry 1991;30:6031–6036.

35. Bahar I, Atilgan AR, Erman B. Direct evaluation of thermal
fluctuations in proteins using a single-parameter harmonic poten-
tial. Fold Des 1997;2:173–181.

36. Tirion MM. Large amplitude elastic motions in proteins from a
single-parameter, atomic analysis. Phys Rev Lett 1996;77:1905–
1908.

DETERMINING LOW-FREQUENCY NORMAL MODES 7


	INTRODUCTION
	METHODS
	RESULTS AND DISCUSSION
	TABLE I.
	Fig. 1.
	Fig. 2.
	Fig. 3.
	TABLE II.
	TABLE III.
	TABLE IV.
	Fig. 4.
	TABLE V.
	Fig. 5.
	TABLE VI.
	TABLE VII.

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

