
The Drawbacks of Model driven

Software Evolution

A Contribution from

Harry Sneed

ANECON GmbH, Vienna

for the CSMR-2007 Special Session

Model driven Software Evolution

Amsterdam, March 2007

Software System Development

according to the V-Model

• Requirement Analysis

• System Design

• Component Design

• Programming

• Unit Test

• Integration Test

• System Test

• Requirement Specs

• System Architecture

• Component Specs

• Code

• Unit Test Cases

• Integration Test Cases

• System Test Cases

Development Activities Development Results

The Waterfall Model

AnalysisOrder

Design
Functional

Spec

Program-
mingDesign

Program Test

System Product

Classic Approach

Spec.Spec.

Functional
Spec.

Functional
Spec.

Technical
Database/Program

Design

Technical
Database/Program

Design

Programs =
Algorithms +

Data Structures

Programs =
Algorithms +

Data Structures

Requirements Text
Figures

Specification E/R-Diagrams
Data Models
Business Rules
Use Cases
GUI Prototypes

Design DB-Models
DC-Protocols
UML Diagrams
Pseudo Code / OCL

Code DB-Schema
Maps
Copy/Include Members
Source Code
JCL

Stepwise Refinement

TOP-DOWN Step wise Development

Mc Cracken/Jackson: Life-Cycle Concept Considered Harmful.
„System requirement can never be stated fully in advance, not even in principle,
because the user doesn`t know them in advance - not even in principle“.

Gladden: Conventional Life-Cycle Approach Exacerbates Maintenance Problem.
„Each modification to the requirements adversely effects the system by impacting

each subsequent task ... the result is a vicious cycle compounding the maintenance
problem ... requirements are always incomplete when development begins“.

Balzer: Specification and Implementation are Intertwined.
„In actual practice developments steps are not refinements of the original specification,
but instead redefine the specification itself ... there is a much more intertwined
relationship between specification and implementation than the standard rhetoric would
have us believe“.

Rich/Waters: „Writing a complete specification in a general-purpose specification
language is seldom easier and often incredibly harder than writing a program.
Furthermore, there has been little success in developing automatic systems that
compile efficient programs form specifications“.

Criticism of the Top-Down-Approach

Test of the TOP-DOWN Method

EVOL REVE-7

Demillo, Perles, Lipton: „If a formal program is transformed from an informal
specification then the transformation process itself must necessarily be informal
... in the end, the program itself is the only complete and accurate description of
what the program will do“.

Fetzer: „From a methodological point of view programs are mere conjectures and
testing is an attempted and all too frequent successful refutation ... reasoning
about programs tends to be non demonstrative, implicative and non additive ...“.

Perles: „People must plunge into activities that they do not understand and
people cannot create perfect mechanism...“.

Sneed: „The only way to make the specification a complete and accurate
description of the program is to reduce it to the semantic level of the program.
However, in so doing, the specification becomes semantically equivalent to the
program“.

„If I can do all the front-end analysis and design with a
CASE tool then pump it into a code generator that spits out
code, the software problem is solved.“

„All programs are written twice, once for the garbage can
and once for the computer“
(Donald Knuth)

„Production and testing is a multi step process with CASE,
first you do the design, then the program generation, then
the compilation, then a link edit, and then you test. If an error
occurs, it occurs in the program and not in the design. To
correct it, you have to start over again from the top.“
(Adam Rin, Father of CA-IDEAL 4GL)

Model driven Development, i.e. Maintenance, brings up the
same issues as with CASE in the 1980‘s

Model-driven tools magnify the mistakes made in the problem definition

Model-driven tools create an additional semantic level to be maintained

Model-driven tools distort the image of what the program is really like

The model cannot be directly executed. It must first be transformed into
code which may behave other than expected.

Model driven tools complicate the maintenance process by creating
redundant descriptions which have to be maintained in parallel

Model driven tools are designed for top-down development.

Top-down functional decomposition creates maintenance problems

Model driven considered harmful

What should be maintained ?

• Most IT-users only maintain the code, the
other semantic levels are soon obsolete.

• More progressive users also maintain the test
cases and some even maintain the
requirements, but hardly any maintain the
design. Reverse Engineering was introduced to
reproduce the design from code.

• Model driven Evolution would have them
maintain the design and regenerate the code
for each new release.

Methods of Software Evolution

EVOL OMAN-1

Functional Specification (CMF/SPEC)

Object Model (UML/OMT)

Programs (C++/Java)

Test Cases (OCL/Script)

TOP DOWN Change Method

EVOL OMAN-2

Functional Concept (CMF/SPEC)

Object Model (UML/OMT)

Programs (C++/Java)

Test Cases (OCL/Script)

enter
hereChange

Derive Object Model Changes from the Functional Concept

Derive Program Changes from the Object Model

Derive Test Case Changes from the Programs

BOTTOM UP Change Method

EVOL OMAN-3

Functional Concept (CMF/SPEC)

Object Model (UML/OMT)

Programs (C++/Java)

Test Cases (OCL/Script)

enter
hereChange

Derive Functional Concept Changes from Object Model

Derive Object Model Changes from the Programs

Derive Test Case Changes from the Programs

Parallel Change Method

EVOL OMAN-4

Functional Concept (CMF/SPEC)

Object Model (UML/OMT)

Programs (C++/Java)

Test Cases (OCL/Script)

enter
everywhere
at same time

Change

Adjustment Functional Concept / Object Model

Adjustment Object Model / Program

Adjustment Programs / Test Cases

CMF Concepts

4-Layered GEOS Product Structure

CPP/CBE Code Components

CTF Test Cases

Requirements

implemented
by

implements

1

n

n

1

1

n

n

1

1

n

n

1

n

1

1

n

Tests tested_by

Tests tested
by

stated

implied

derived

Managers

Analysts

Developers

Testers

Alternate Approaches to Software Evolution

• The Top-Down Model driven Approach

• The Bottom-Up Code driven Approach

• The Dual Approach

• The Requirement driven Approach

• The Test Driven Approach

Evolution
Requirements

Code Generator

Source Code

UML
Model

Figure 1: Top Down Model-driven Approach

Transformation

Generation

Maintainer

Information Adaption

Evolution
Requirements

Reverse Engineering Tool

Source Code

UML
Model

Figure 2: Bottum-Up Code-driven Approach

Generation

Transformation

Information

Adaption

Maintainer

Evolution
Requirements

Figure 3: Dual Approach

Maintainer Tester

Test Generator

Test Procedures

Test Specification

Code Generator

Source Code

Code Specification
UML

Test

Verification
Code = TestSpec

Evolution
Requirements

Figure 4: Requirements-driven Approach

Maintainer Tester

Reverse Engineering Tool

Source Code
Verification

Test Procedures

Repository

Generation

Transformation Transformation

Generation

Adaption Adaption

Information

Software is Communication

• Each semantic software level of abstraction serves

some communication purpose.

• Requirements serve the communication between

developers and users.

• Code serves the communication between

developers and the machine.

• Test cases serve the communication between

testers, users and developers.

• Design models serve the communication between

developers.

The Role of Communication in Software Evolution

• The essential communication is that between humans and the
computer, i.e. the code. It must be maintained in any case.

• The next most important communication is that between users and
developers. It should be maintained in the requirements documents.
There should be no change requests, instead the requirements should
be evolved.

• The third most important means of communication is the test cases.
They should be maintained to ensure the quality of new releases. Test
cases are also an excellent means of communicating with the users.

• The least important media of communication is the design
documentation. It is nice to have one, but it is not essential. Most IT
users have managed to live without it for years. Besides it can always
be reproduced from the code.

• Of course, it would be nice to maintain and evolve all the semantic
levels of a software product, but in view of the costs this is seldom
possible. So if any has to be sacrificed than it had best be the design
documentation.

Summary

• If a UML design can really replace the programming code
as envisioned by Jacobson in his paper „UML all the way
down“, then it becomes just another programming
language.

• The question then comes up as to what is easier to change

– The design documents or

– The programming language

• This depends on the nature of the problem and the people
trying to solve it. If they are more comfortable with
diagrams, they can use diagrams. If they are more
comfortable with text, they should write text.

• Diagrams are not always the best means of modelling a
solution. A solution can also be described in words. The
important thing is that one model is enough – either the
code or the diagrams. They should be reproducible from
one another.

