
A UML Profile and a FUJABA PlugIn for modelling dynamic software
architectures

Mohamed Nadhmi MILADI
University of Sfax

ReDCAD Laboratory
Route Soukra Km 3.5

B.P W 3038 Sfax
Email: nadhmi@gmail.com

Mohamed JMAIEL
University of Sfax

ReDCAD Laboratory
Route Soukra Km 3.5

B.P W 3038 Sfax
Email: mohamed.Jmaiel@

enis.rnu.tn

Mohamed hadj Kacem
University of Sfax

ReDCAD Laboratory
Route Soukra Km 3.5

B.P W 3038 Sfax
Email: mohamed.hadjkacem@

fsegs.rnu.tn

Abstract

In this paper we propose an UML profile and a FUJABA
Tool Suite PlugIn for modelling components based on dy-
namic software architecture. This former called “Architec-
tural PlugIn” implementing a new UML Profile [10] and
allowing the mapping built models to XML language after
validating the obtained generated files with respect to its
schemas. In fact, the UML profile enables us to model dy-
namic software architectures which is in turn made up of
three diagram types: the first type deals with the structural
aspect defining the architectural style of an application, the
second handles the dynamic aspect by modelling a set of re-
configuration operations and the final one that models the
coordination among the reconfiguration operations defined
in the above aspect.

1 Introduction

Nowadays, software has an important role in various sys-
tems among of which the critical infrastructures or trans-
portation systems. These systems should have special pro-
prieties such as availability and reliability that have to be
satisfied by the software parts [18]. More piece of evidence,
these mentioned systems are found in numerous fields for
example : telephone switching systems, banking systems,
mobile embedded systems . . . More deeply, unmanned con-
trol systems and critical systems such as spacecraft naviga-
tional systems need robustness to detect and to repair auto-
matically anomalies at run-time [17].

Dynamic reconfiguration techniques appear to be a
promise for building systems that have requirements for
adaptability and/or high availability. In fact, it is the process
of making changes to an executing system without requir-

ing the temporary system shutdown [5]. In order to pro-
vide a more generic and systematic independent view, we
need to describe the software architecture and the dynamic
reconfiguration at a high-level of abstraction. Languages
which deal with software architectures can be divided into
three classes. The first corresponds to Architecture De-
scription Languages (ADL), like Darwin [3], Olan [1], and
Rapide [14]. However, most of ADLs describe architec-
ture evolution by the use of some predefined configurations
that can’t draft all architectural changes [9]. The second in-
cludes works that are based on formal techniques such as
graph based techniques [6, 16, 20], logic based [4] and al-
gebra process based [19]. Whereas, these techniques are
generally difficult to apprehend. The third one corresponds
to the Unified Modelling language (UML) [15] which be-
came a standard as well in the industrial community as
the academic one. Despite the founded innovations in the
2.0 version, this language remains inappropriate in mod-
elling dynamic architectures [10]. In a sense, UML gives
all necessary elements to model component based software
architecture. The modelling of such architecture was al-
most achieved by important innovation in the component
diagram (new component notation, port, required interface
and provided interface notation) and the composite struc-
ture diagram (one of the four new diagrams introduced in
UML2.0) [15]. All these innovations focus on the mod-
elling of static software aspects. Nevertheless, the dynamic
aspect of such architectures in terms of reconfiguration and
architectural evolution, didn’t specifically deal in UML lan-
guage.

In order to cover these weaknesses, we propose a new
UML profile called “architectural profile” [10] which com-
bines the expressive UML powers and graph grammar. It
allows to model software architectures (structural, dynamic
and coordination aspects). To be more precise, the structural

aspects are graphically modelized using the component dia-
gram. Moreover, in terms of configuration operations which
are based on graph rewriting rules, the dynamic aspect is de-
fined. In addition, the coordination protocol is defined as a
partial order among reconfiguration operations.

In this paper we focus on a FUJABA PlugIn that imple-
ments the proposed UML profile. The Developed “architec-
tural PlugIn” did not allow us to model such architectures
but also to map the resulted models towards the XML lan-
guage. Baring in mind, all constructed models are validated
through XML schemas (integrated in the PlugIn). Further-
more, the architectural PlugIn has been developed by the
use of a set of rules that enables it to ensure the integrity
of each model as well as the coherence between different
models.

The rest of the paper is organized as follows. Section 2
presents the software architecture modelling. Section 3 de-
scribes the modules of our “architectural PlugIn”. In section
4 we will present a Patient Monitoring System case study to
more illustrate our new approach. Section 5 will concludes
the whole work with some suggested future works.

2 Architecture modelling

UML has been based on a four-level meta-modelling hi-
erarchy since its first version. Each level (except the top)
is presented as an “instance of” its former. More specifi-
cally, UML defines models which can be used in different
ways during the project development and proposes meta-
models which define the mentioned models language ex-
pression. Because of these shortcomings in UML language
(especially in model dynamic component software architec-
ture [10]), we developed an “architectural profile” that uses
UML extension techniques. Thus, modelling dynamic com-
ponent software architecture is built on two levels :

2.1 Meta-Model Level

The architectural profile is built upon the UML meta-
model and more precisely the component diagram meta-
model. In fact, the meta-model of the new profile [8] as
depicted in figure 1 preserves the meta-classes of the com-
ponent diagram meta-model (we represent in white color
just meta-model component diagram elements on which the
extension will take place) and extends through meta-classes
addition (represented in gray color) that describes the pro-
file.

2.2 Model level

The model level of the “Architectural Profile” specifies
software applications component due to three basic aspects:
the structural aspect defines the structural architectural part,

« DynamicFeature »

« Require & Delete »

« Insert »

« Require & Preserve »

« ReconfOperationName »

« ReconfigurationOperation »

Connector

Port

Interface

2..* 1..*

0..*

1..*

+/required +/provided
0..* 0..*

ConnectorKind

Delegation

Component

enumeration

ha
s

Assembly

« Architecture »

« OCL »
expressed

« Guards »
« StructuralProfile »

« StructuralName »

« StructuralFeature »

« Constraint »

Figure 1. Architectural profile

the dynamic aspect that models the architecture evolution
through some reconfiguration operations and the coordi-
nation aspect that depicts coordination within these oper-
ations.

• Modelling structural aspect is realized by three differ-
ent parts described in figure 2. Firstly, the top part,
known as the “structural name” stereotype that defines
the architectural style name. Secondly, the central
part, identified by “structural feature” stereotype that
models the architecture component and connections
types. Finally, the bottom part, which is identified by
“guards” stereotype, models a set of architectural prop-
erties that should to be verified for all possible config-
urations belonging to the style. All the architectural
properties are expressed in the OCL language [12,13].

<<Structural name>>
 Architectural_style

<<Structural Feature>>

<<Guards>>

Figure 2. Architectural style aspect

• Modelling dynamic aspect means giving elements in
order to specify the architecture structural evolution
in terms of adding / or deleting components and con-
nections. Thus, modelling dynamic aspect is made to

2

allow application evolution from one configuration to
another. In fact, the description of a reconfiguration
operation is composed mainly of three different parts
described in figure 3. The top part identified by “Re-
configuration Operation” stereotype names the recon-
figuration operation. The central part, in its turn, is
made up of three parts. On the left we find a part
identified by “require & delete” stereotype that mod-
els the components and/or connections which will be
deleted during the operation. In the middle, we find a
part identified by “require & preserve” stereotype that
models the components and/or connections interven-
ing in the operation without being changed. On the
right, we find a part identified by “insert” stereotype
that models the components and/or connections which
will be inserted during the operation. Finally, the bot-
tom part identified by “guards” stereotype specifies the
constraints that must be imperatively respected before
its execution. As we know, all constraints are ex-
pressed by OCL language.

<<Structural name>>
 Architectural_style

<<Require & Delete>>

<<Guards>>

<<Require & Preserve>> <<Insert>>

Figure 3. The dynamic aspect

• The coordination aspect models the dependency
among the reconfiguration operations specified in the
dynamic part. Thus, it represents how these operations
must be managed in order to ensure the application
evolution. This aspect is based on activity diagram
which differs from this latter that is to say each activ-
ity models a reconfiguration operation defined in the
previous aspect.

3 Architectural Plugin: basic modules

Architectural Plugin is built essentially on two basic
modules. The first, allows us to draw various UML models
as it is mentioned in the previous section(meta-model level).
Thus, any plugin user can model dynamic applications bas-
ing on theses three former aspects. The second allows the
mapping of these models towards XML language and the
validation of the generated file with XML schemas.

3.1 Graphic Module

In using this module, “Architectural Plugin” users model
dynamic application through the structural, dynamic and
coordination aspects. However, an “Architectural Plugin”
users are not essentially experts in the dynamic software
architectures modelling. So, they can make various er-
rors such as syntactic errors or graphical modelling er-
rors. . . That’s why, the “Architectural Plugin” development
was made by a set of rules assuring the coherence and the
validity of the three aspects. In their turn, these rules can
be classified into two main categories. The first, called
“inter-model rules” that permits model’s validation within
the same aspect. The second, called “intra-model rules”,
manages coherence among the three aspects.

3.1.1 Inter-model Rules

These rules check the model validity of each aspect alone (
structural, dynamic and coordination). The implementation
of each one respects some rules. In fact, there are some
common rules within the aspects on one hand. On the other
hand, there are other specific to each aspect.

• The structural aspect as depicted in figure 2 is dedi-
cated to model the dynamic application structure due
to some rules. In fact, there is only one structural
diagram in the application modelling. It models the
application architectural styles. Thus, the structural
diagram is composed of two parts : “structural fea-
ture” and “guards” are identified with a unique struc-
tural name. The structural feature part includes archi-
tectural elements (components, ports, required inter-
faces, provided interfaces, assembly connections, del-
egation connections and sub-components). It mod-
els only components type (don’t model component in-
stances).The structural aspects must be available dur-
ing the application modelling.

• Dynamic aspect as depicted in figure 3 is dedicated
to model reconfiguration operations and respects some
rules. In fact, modelling dynamic aspect includes at
least one reconfiguration operation diagram (generally
includes many reconfiguration operation diagram). A
reconfiguration operation diagram is identified by its
name. Moreover, it is composed of four major parts
(“require & delete” , “require & preserve”, “insert”
and “guards”). The first three parts model the inserted,
deleted or preserved component’s type during opera-
tion reconfiguration execution. Furthermore, its name
is represented by the following format : component’s
instance name : component’s instance type. Finally,
guard’s part model some constraints to be verified be-
fore reconfiguration operation execution. Thus, the

3

new system architecture always preserve the architec-
tural style’s constraints.

• Coordination Aspect is dedicated to model the coordi-
nation within the reconfiguration operations with re-
spect to some rules. In fact, a reconfiguration op-
erations diagram includes reconfiguration operation
nodes and all standard model elements of an UML ac-
tivity diagram such as initial, final, decision, merge,
fork or join nodes . . . A reconfiguration operation dia-
gram must begin with a unique initial node and have to
be finished with one final node at least. Coordination
diagram model the coordination between reconfigura-
tions operation. Thus, differently to UML activity di-
agram, each activity models one of the reconfiguration
operation detailed in the previous aspect (reconfigura-
tion operation node stereotype). Finally, the deletion of
a reconfiguration operation node or a reconfiguration
control node implies the deletion of all related links.

• Structural and dynamic aspects have some common
rules. In fact, components can have some sub-
components connected through delegating connec-
tions. A port must have at least one interface (required
or provided) and it is identified by a unique name in the
same component. This latter is identified by a unique
name in each diagram. A required (vs provided) inter-
face is identified by a unique name in the same port.
An assembly connection should occur between a re-
quired and a provided interface. If a connection is
deleted, the provided and required interfaces will be
kept. The port deletion involves the deletion of all its
interfaces. Finally, the component deletion involves
the deletion of all its ports, interfaces and eventually
its sub-components and its connections as well.

3.1.2 Intra-model rules

After presenting each aspect rules alone, we will explain
now the rules that enable us to ensure the integrity within
the three main aspects. In fact, this integrity is realized be-
tween structural part and dynamic one on one hand, on the
other hand between dynamic aspect and coordination one.

• Structural towards dynamics :A reconfiguration oper-
ation diagram can be created only if there is an already
structural diagram creation. Each component instance
in the reconfiguration operation diagram must have a
corresponding Component type defined in the struc-
tural feature part of the structural diagram. A compo-
nent can have only ports and interfaces already defined
in the structural feature part. The component instance
addition in the reconfiguration operation diagram must
include all its ports and interfaces addition(defined in
the Structural Feature part). Any connection should be

one of the defined connection in the structural feature
within the same interfaces.

• Dynamics towards coordination :A coordination dia-
gram can be created only if there is is an already dy-
namic diagram creation. Each reconfiguration opera-
tion node in the coordination diagram corresponds to a
reconfiguration operation diagram in the dynamic as-
pect.

3.2 XML Module

This module enables us to transform “Architectural Plu-
gin” models from graphical format towards a textual one
with respects to XML language. The XML generation files
covers the three mentioned aspects. Each file can be val-
idated by its schema. This latter validation was precisely
realized by the use of XERCES API through Apache XML
Project [7]. Moreover, the generated XML file preserves the
graphical structure of each aspect. In fact, in the structural
aspect, the generated XML file gives us an idea of the ar-
chitectural structure application. First, the file describes all
application components. For each component, it describes
all its associated models such as port, interfaces and com-
posite components. Thereafter, this latter describes all ar-
chitectural connections (assembly or delegation). It is worth
to note that the name’s “Assembly” connection type should
be written as follows : “Full name of the required inter-
faceTO Full name of the provided interface” and the “Del-
egation” name connection type format is : “Full port com-
ponent nameTO Full port sub-component name”. Finally,
each architectural application property is inserted in a con-
straint beacon (mark out). Then in the dynamic aspect, the
XML generated file describes a reconfiguration operation
and attributes for each part (“require & delete” , “require &
preserve” or “insert”) all their associated models (compo-
nent, port, interfaces, sub-component and connection). The
dynamic aspect models only component instances. There-
fore, we can have more than one instance at the same com-
ponent. That’s why, some multi-connection (connection be-
tween one or more required interface to one or more pro-
vided interface) can take place. In order to manage this new
type of connection, we integrated a module that identify and
integrate all multi-connections to their respective parts (“re-
quire & delete” , “require & preserve” and “insert”). Its
name is formulated as follows : “Full name of the required
interface (Full name of the required interface)*TO Full
name of the provided interface(Full name of the provided
interface)*”. Finally, the generated XML file for the coordi-
nation aspect describes the coordination among all reconfig-
uration operations. Hence, it describes all reconfigurations
operations, control nodes and their connections.

4

4 Case study

To carry out the presentation of the implemented plugIn
and to justify the extensions presented by the architectural
profile, we illustrate our work through a case study entitled
Patient Monitoring System PMS ([11] and [16]). It allows
some nurses to control their patients at distance in a clinic
centre.In what follows, we will specify a description and a
PMS system architecture and its evolution through the three
detailed steps.

4.1 Modelling system architecture

Patient Monitoring System is an event based system [2].
To represent the communication architecture of this system,
we chose theProducer/Consumerstyle. For each service of
the private clinic (pediatric, cardiology, maternity, . . .) we
associate an event service to manage the communications
between nurses and bed monitors. For each bed monitor,
the responsible nurse periodically requests patient data (for
example, blood pressure, pulse and temperature) by sending
a request to the event service to which it is connected. This
service transmits the request to the concerned bed monitors.
When a patient state is considered abnormal, its correspond-
ing bed monitor raises an alarm to the event service to which
it is related. Then, this service transmits the signal to the re-
sponsible nurse. So, the nurse and the bed monitor behave
respectively as a consumer and a producer component.

In addition to the architectural style constraints, an appli-
cation can have specific properties which must be satisfied
during the evolution of its architecture. We will take some
PMS system properties such as:

1. The system must contain maximally 3 services.

2. A service contains maximally 5 nurses and 15 patients.

3. A patient must always be affected by only one service.
This latter must contain at least one nurse to take care
of this patient.

4. A nurse must be connected to only one service.

5. A nurse cannot control more than 3 patients.

6. A patient can be controlled only by one nurse.

7. The existence of a patient implies a nurse existence.

Hence, the system specification must consider the con-
straints of theProducer/Consumerstyle and the stated spe-
cific properties. The figure 4 describes the PMS system ar-
chitecture with a description of the communication accord-
ing to theProducer/Consumerstyle.

Figure 4. The PMS system architecture

4.2 Modelling dynamic evolution

Modelling dynamic architecture is realised trough some
reconfiguration operations. The operations execution of one
or more ensures the PMS architecture evolution. For in-
stance, after the insertpatient operation execution, the PMS
architecture progresses from one configuration to another
(figure 5). In what follow, we will present only two recon-
figuration operations.

4.2.1 inserteventService operation

This operation add a new event service on our PMS system.
It is useful, for example, when the number of nurses and pa-
tients is increasing and the current event services in PMS ar-
chitecture became insufficient. Nevertheless, before adding
the new event service instance, we must assure that the cur-
rent PMS architecture doesn’t contain more than three event
service component instances (according to the architectural
style presented above). The modelling of these rules is de-
picted in the figure 6.

4.2.2 insertpatient operation

This operation adds a new instance of patient component.It
is realized when a new patient arrived to the clinics. It’s
worth to note that two constraints should be verified be-
fore adding a new patient component instance on the cur-
rent PMS architecture. First, there is an event service that
can survey the new patient (no more than five patients on
the service event). Second, there is a nurse that can look
after the new patient (no more than 3 patient hold on by the
nurse). The modelling of these rules is given in the figure 7.

5

X : Event
service

Z: Patient
N:Nurse

S

P

N
P

S S

N

S

X : Event
service
X : Event
service

Z: PatientZ: Patient
N:NurseN:Nurse

S

P

N
P

S S

N

S

Architecture before insert_patient operation
reconfiguration

Architecture after insert_patient operation
reconfiguration

P

X: Event
service

N:Nurse Z: Patient

S

P

Z’: Patient

P

P

S
S

P

S

P

X: Event
service
X: Event
service

N:NurseN:Nurse Z: PatientZ: Patient

S

P

Z’: PatientZ’: Patient

P

P

S
S

P

S

Figure 5. Architecture evolution

Figure 6. Modelling insert eventService oper-
ation

4.3 Modelling coordination aspect

This part is useful to illustrate how reconfiguration oper-
ations coordinate together in order to realise PMS architec-
tural evolution. Moreover, this aspect enables the architect
to know what what are suitable operations that are ready

Figure 7. Modelling insert patient operation

to execute. In fact, in the beginning of functioning system,
architect have to add at least an event service to the sys-
tem (number event service inserted depend on the number
of nurses and patients to be hold). Then, architect should
insert some nurses to look after our coming patients. After
that, architect has the choice whether to add, delete or trans-
fer patient, nurses or event services according to the PMS
system requirements. To clarify more, figure 8 illustrates
coordinating modelling aspect.

Figure 8. Modelling coordination

6

5 Conclusion

Briefly speaking UML Language is undoubtedly the
most widespread modelling language. Whereas, this Lan-
guage is inappropriate for the dynamic modelling architec-
ture. To overcome these shortcomings, we implemented a
FUJABA PlugIn called “Architectural PlugIn” allowing us
to model the architecture dynamics according to an UML
architectural Profile. Our “Architectural PlugIn” models ar-
chitecture dynamics through three major aspects : struc-
tural, dynamic and coordinated aspect. Moreover, the “Ar-
chitectural PlugIn” models are syntactically and graphically
validated by two different kinds of rules : Intra-model Rules
and Inter-model Rules. Likewise, our “Architectural Plu-
gIn” maps the built models to the XML language and val-
idates the generated XML file by some integrated XML
schemas in the Plugin.

However the semantic aspect remains unexplored in our
current work. For instance, we can’t assume that “Guards”
part elements appear in the “structural feature” one. Indeed,
we can’t also assume that there is no connection between
“Require & Delete” part and the “insert” part. A possible
prospect might cover these limits to transform the UML
models into formal specification in order to prove some
properties such as consistency. This work is currently under
development usingZ specification.

References

[1] L. Bellissard, F. Boyer, M. Riveill, and J.-Y. Vion-Dury.
System services for distributed application configuration.
In Proceedings of 4th International Conference on Config-
urable Distributed Systems, Annapolis, Maryland, pages 4–
6, may 1998.

[2] A. Carzaniga, E. D. Nitto, D. Rosenblum, and A. Wolf. Is-
sues in supporting event-based architectural styles.In 3rd
International Software Architecture Workshop (ISAW3), Or-
lando, Florida, 1998.

[3] E. Cuesta, P. de la Fuente, and M. Barrio-Solorzano. A
constructive development environment for parallel and dis-
tributed programs. InProceedings of the IEEE Workshop on
Configurable Distributed Systems (IWCCS’94), pages 304–
312, Mars 1994.

[4] M. Endler and J. Wei. Programming generic dynamic re-
configurations for distributed applications. InProceedings
of the International Workshop Configurable Distributed Sys-
tems, pages 68–79, 1992.

[5] J. Hillman and I. Warren. An open framework for dynamic
reconfiguration.icse, 0:594–603, 2004.

[6] D. Hirsch, P. Inverardi, and U. Montanari. Graph gram-
mars and constraint solving for software architecture styles.
In Proceedings of the Int. Software Architecture Workshop,
pages 69–72, 1998.

[7] X. Implementation. Apache XML
Project. http://xerces.apache.org/xerces2-
j/javadocs/xerces2/index.html.

[8] M. H. Kacem, M. Jmaiel, and K. Drira. Describing dy-
namic software architectures using an extended uml model.
in Proc. of Symposium on Applied Computing, 2006.

[9] M. H. Kacem, M. Jmaiel, A. H. Kacem, and K. Drira. Eval-
uation and comparison of ADL based approaches for the de-
scription of dynamic of software architectures. InICEIS’05:
The 7th International Conference on Enterprise Information
Systems, Miami, USA, May 2005. INSTICC Press.

[10] M. H. Kacem, M. N. Miladi, M. Jmaiel, A. H. Kacem,
and K. Drira. Towards a uml profile for the description
of software architecture. InCOEA’05, The Conference on
Component-Oriented Enterprise Applications, Augsburg,
Germany, Septembre 2005. to be published on Springer Lec-
ture Notes in Computer Science.

[11] I. Loulou, A. HadjKacem, M. Jmaiel, and K. Drira. Ap-
proche int́egŕee pour la sṕecification des architectures dy-
namiques orientées composants. InProceedings of the
Eighth Maghrebian Conference on Software Engineering
and Artificial Intelligence, MCSEAI’04, pages 125–136,
Mai 2004.

[12] I. Loulou, A. H. Kacem, M. Jmaiel, and K. Drira.
Sṕecification et v́erification des architectures dynamiques
des syst̀emes orient́es composants. Technical Report
Décembre, Faculté des Sciences Economique et de Gestion
Sfax, 2003.

[13] I. Loulou, A. H. Kacem, M. Jmaiel, and K. Drira. Towards
a unified graph-based framework for dynamic component-
based architectures description in z. InICPS’04: The
IEEE/ACS International Conference on Pervasive Services,
pages 227–234. IEEE Computer Society, 2004.

[14] D. Luckham. Rapide : A language and toolset for simula-
tion of distributed systems by partial orderings of events. In
Proceedings of DIMACS Partial Order Methods Workshop
IV, Princeton University, 1996.

[15] O. G. Management. Uml 2.0 superstructure specification.
Final adopted specification, OMG, http://www.omg.org/,
Augest 2003.

[16] D. L. Metayer. Describing software architecture styles using
graph grammars.IEEE Transactions on Software Engineer-
ing.

[17] M. E. Shin and D. Cooke. Connector-based self-healing
mechanism for components of a reliable system. InDEAS
’05: Proceedings of the 2005 workshop on Design and evo-
lution of autonomic application software, pages 1–7, New
York, NY, USA, 2005. ACM Press.

[18] M. Tichy, H. Giese, D. Schilling, and W. Pauls. Computing
optimal self-repair actions: damage minimization versus re-
pair time. InWADS ’05: Proceedings of the 2005 workshop
on Architecting dependable systems, pages 7–6, New York,
NY, USA, 2005. ACM Press.

[19] R. J. van Glabbeek. Bounded nondeterminism and the ap-
proximation induction principle in process algebra. In4th
Annual Symposium on Theoretical Aspects of Computer Sci-
ences on STACS 87, pages 336–347, London, UK, 1987.
Springer-Verlag.

[20] A. van Lamsweerde. Formal specification: a roadmap. In
ICSE ’00: Proceedings of the Conference on The Future
of Software Engineering, pages 147–159, New York, NY,
USA, 2000. ACM Press.

7

