
Sheet 1 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

A Constructive Approach to Software

Evolution

Selim Ciraci

Pim van den Broek

Mehmet Aksit

Univeristy of Twente

Sheet 2 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Outline

� The limitations of current design/evaluation techniques

w.r.t. evolution

� Software Design Process – Problem solving approach

� Evolution Changes

� Approaches to software evolution

� Destructive

� Constructive

� Constructive approach to software evolution applied to

integration problem

� How to Apply

� The contexts of evolution problems

Sheet 3 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Limitations of design/evaluation

techniques

� Design processes:

� Evolution is not considered, software is evolved by changing

the initial components

� No systematic way for finding mechanisms that can allow the

software to evolve without changing components

� Evaluation techniques (Scenario based)

� Scenario’s find problematic components

• E.g. what components are going to change in near future

� How to change the identified components so they can

withstand these changes?

• Not addressed by evaluation techniques

Sheet 4 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Limitations of design/evaluation

techniques

� Design patterns and styles (mechanisms)

� They provide extensible interfaces

• Can withstand changes

� But which design pattern can be used for which

evolution problem?

In summary: Design/Evaluation techniques do not include

steps that points out which mechanisms can be used to

apply the changes

Result: Changes applied by changing the initial components,

design drift

Sheet 5 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Software Design Process –

Problem solving approach

� Software system starts its life-

cycle with a set of

Requirement specifications

� The design process converts

the requirements to solutions

� A solution can be viewed as a

set that contains the software

components that solve the

requirement(s)

� Contents of a solution set

depends on the design process

used

Design Process

R ={R , R ...}

S ={S , S ...} System 1 2

Combine

System

 System 1 2

Sheet 6 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Software Design Process –

Problem solving approach

� The set SSystem is a set of

sets that contain the

solutions of the system.

� The solutions in SSystem are

then combined to form the

overall software system

� System=Combine(SSystem)

Design Process

R ={R , R ...}

S ={S , S ...} System 1 2

Combine

System

 System 1 2

Sheet 7 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Software Design Process –

Problem solving approach

� Example PDA Input and Storage System

� The Requirements:

• R1: The system should be able to accept textual input

• from the user.

• R2: The system should be able to accept spoken input

• R3: The system should be able to store the given input in

text format on a local disk

� RSystem = {R1, R2, R3}

Sheet 8 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Software Design Process –

Problem solving approach

� Example PDA Input and Storage System

� The solutions for these requirements

� S1 = {C1,C2,R1}, S2 = {C3,C4,R2,R3}, S3 = {C5} where:

• C1: Abstract I/O Reader class

• C2: Keyboard Reader Class

• R1: Inheritance relation between C1 and C2

• C3: Audio Recorder class

• C4: Voice Recognizer class.

• R2: Inheritance relation between C1 and C3

• R3: Aggregation relation between C4 and C3

• C5: File writer class.

Sheet 9 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Software Design Process –

Problem solving approach

Design of PDA Input & Storage System

KeyboardReader

+readByte(): byte

+read(readArr:byte[]): int

+read(readArr:byte[],from:int,to:int): int

PDA_IO_Reader

+readByte(): byte

+read(readArr:byte[]): int

+read(readArr:byte[],from:int,to:int): int

AudioReader

-soundSystemReady: bool

+readByte(): byte

+read(readArr:byte[]): int

+read(readArr:byte[],from:int,to:int): int

-initSoundSystem()

VoiceRecognizer

-Events: Map

+recognizerLoop()

+registerEvent(e:Event)

-getSoundData(): byte[]

FileWriter

+writeByte()

+write(writeArr:byte[]): int

+write(writeArr:byte[],from:int,to:int): int

+FileWriter(Name:string)

Sheet 10 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Software Design Process –

Problem solving approach

Evolution

� Evolution causes the requirements of the

system to change

� Requirement changes causes the solutions of

the software system to change

� Three types of changes:

� Integration: SSystem -> SSystem ∪ {SNew}

� Removal: SSystem -> SSystem - {SOld}

� Modification: SSystem -> (SSystem - {SOld}) ∪ {SNew}

Sheet 11 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Approaches to Software Evolution

� Requirement changes affect the solutions

� Destructive Approach: Due to changes at Ssystem

the combine operation is restarted

� The interactions between components are re-

identified

� Constructive approach: Find the context of the

evolution problem, find the mechanism(s) that

allow extensions for this context and apply the

changes without breaking about the System

Sheet 12 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Approaches to Software Evolution

Constructive Approach

� Works without breaking up the System to its solutions

� NewSystem = (S+, S-) ⊕ System
�S+ : Set of solutions to be added to the system

�S- : Set of solutions to be removed from the system

� For the types of changes:

�Integration: NewSystem = ({SNew}, {}) ⊕ System

�Removal: NewSystem = ({}, {SOld}) ⊕ System

�Modification: NewSystem = ({SNew}, {SOld}) ⊕ System

Sheet 13 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Approaches to Software Evolution

Example

� Example PDA Input & Storage

� R4 – The system should support encrypted file writing

� Solution to R4 – EncryptedFile class

� Destructive approach: add a new class and force the

client to use different classes (possibly also different

interface) for write operations

� Constructive Approach:

� NewSystem = ({EncryptedFile}, {}) ⊕ System

� Find the properties of the evolution problem (the context),

then for the context find the mechanisms

Sheet 14 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Approaches to Software Evolution

Constructive Approach – How to Apply

Contexts

System

Find

Evolution Mechanisms

Search

Apply

New System

Evolution Mechanism

SelectConstraints

Solution

Sheet 15 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Constructive Approach Applied to

Integration Problem

� To apply the constructive approach we need to

find the context of the evolution problem

� The context contains parameters that details the

evolution problem

� We can find the details of the problem by looking at

the relation and properties of SNew and SSystem

� We identified 3 parameters that detail the evolution

problem

• Characteristic of SNew (Sta)

• Relationship between SNew and SSystem (Rel)

• Enviroment (Env)

Sheet 16 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Constructive Approach Applied to

Integration Problem - Contexts

1. The status of SNew (Sta)

1. Composition (C) – The change has occurred

2. Extension (Ex) – extend the system with scenarios

so that it can withstand anticipated changes

3. Exception – We cannot find a solution for the new

requirement

Sheet 17 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Constructive Approach Applied to

Integration Problem - Contexts

2. The relationship between SNew (Rel)

1. Non-overlapping (NO) – ∀Sj ∈ Ssystem ,

Sj ∩ SNew= ∅
2. Overlapping (O) – ∃Sj ∈ Ssystem ,

Sj ∩ SNew≠ ∅
3. Specialization (S) – ∃Sj ∈ Ssystem , Sj ⊂ SNew

4. Interpertation (I) – ∃Sj ∈ Ssystem , Sj ⊃ SNew

Sheet 18 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Constructive Approach Applied to

Integration Problem - Contexts

3. The Environmental Factors (Env)

1. Run-time adaptation (RA)

2. Compile-Time adaptation (CA)

3. Installation (In)

� The context of an evolution problem is a triple

{Char, Rel, Env}

� Char ranges over C, Ex

� Rel ranges over NO, O, S, I

� Env ranges over RA, CA, In

Sheet 19 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Constructive Approach Applied to

Integration Problem - Contexts

� There are 36 contexts for evolution problems

� Char takes 3 values, Rel takes 4 values, Env takes 3

values

� Not all possible combinations of the parameters

give a feasible context

� When Char=Ex, SNew doesn’t exist; we can’t find a

value for Rel parameter

� Thus we have 24 feasible contexts

� For each context, we listed applicable

mechanisms from SE literature

Sheet 20 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Constructive Approach Applied to

Integration Problem -Example

� Example PDA Input & Storage

� R4 – The system should support encrypted file writing

� Solution to R4 (SNew)– EncryptedFile class

� The context of this evolution problem:

� Char = C since the change has occurred

� Rel = NO since SNew doesn’t intersect with the any

solution in Ssystem

� Env = Assume we want to achieve this composition

with compile time techniques (CA)

� {C,NO,CA}

Sheet 21 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Constructive Approach Applied to

Integration Problem -Example

� {C,NO,CA} – The mechanisms are polymorphic calls,

decorator pattern,

�The System is evolved using decorator pattern
FileWriteOperation

+writeByte()

+write(writeArr:byte[]): int

+write(writeArr:byte[],from:int,to:int): int

+FileWriter(Name:string)

StandardFileWriter

+file: FileWriter

+writeByte()

+write(writeArr:byte[]): int

+write(writeArr:byte[],from:int,to:int): int

+StandardFileWriter(Name:string)

EncryptedFileWriter

#AFileWriteOperation: FileWriteOperation

+writeByte()

+write(writeArr:byte[]): int

+write(writeArr:byte[],from:int,to:int): int

+setKey(key:byte[])

SharedKeyEncrpytedFileWriter

+writeByte()

+write(writeArr:byte[]): int

+write(writeArr:byte[],from:int,to:int): int

+setKey(key:byte[])

FileWriter

+writeByte()

+write(writeArr:byte[]): int

+write(writeArr:byte[],from:int,to:int): int

+FileWriter(Name:string)

Sheet 22 / 18© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam – 20th March

Conclusion And Future Work

� Constructive Approach to Software Evolution

allows the system to evolved without changing

the initial design

� Knowledge about the design stays the same

� No design drift

� Future work

� Mechanisms for removal and modification

