&)

University of Twente

A Constructive Approach to Software
Evolution

Selim Ciraci
Pim van den Broek
Mehmet Aksit

Univeristy of Twente

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 1

. 6
O“tllne University of %Jﬁ&

o The limitations of current design/evaluation techniques
w.r.t. evolution

o Software Design Process — Problem solving approach

= Evolution Changes

o Approaches to software evolution
= Destructive

= Constructive
o Constructive approach to software evolution applied to
integration problem

= How to Apply
= The contexts of evolution problems

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 2

.. . "‘ ':' .J. ° ° ° ° ° r‘
X o T g Limitations of design/evaluation Y
0% ks techniques

Design processes:

= Evolution is not considered, software is evolved by changing
the initial components

University of Twente

= No systematic way for finding mechanisms that can allow the
software to evolve without changing components

o Evaluation techniques (Scenario based)
= Scenario’s find problematic components
» E.g. what components are going to change in near future

» How to change the 1dentified components so they can
withstand these changes?

* Not addressed by evaluation techniques

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 3

&)

University of Twente

' fg" ;ﬁ Limitations of design/evaluation
' techniques

o Design patterns and styles (mechanisms)

= They provide extensible interfaces
* Can withstand changes

= But which design pattern can be used for which
evolution problem?

In summary: Design/Evaluation techniques do not include
steps that points out which mechanisms can be used to
apply the changes

Result: Changes applied by changing the initial components,
design drift

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 4

o Software system starts its life-
cycle with a set of
Requirement specifications

o The design process converts
the requirements to solutions

2 A solution can be viewed as a
set that contains the software
components that solve the
requirement(s)

Contents of a solution set
depends on the design process
used

Software Design Process — i)
Problem solving approach

University of Twente

={R o}

System

Design Process

System {Sl’ S }

v

Combine

v

System

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 5

a The set Sqyseem 18 @ set of
sets that contain the
solutions of the system.

a The solutions in Sg .., are
then combined to form the

overall software system
 System=Combine(Sg,,,)

Software Design Process — i)
Problem solving approach

University of Twente

={R o}

System

Design Process

System {S S }

v

Combine

v

System

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 6

Software Design Process — i)
PrOblem SOlVing approach University of Twente

' -, S
s Ak x
rF '1,.. a ¥
! L;‘.h-.‘

Example PDA Input and Storage System

Q

= The Requirements:
* R,: The system should be able to accept textual input
 from the user.
* R,: The system should be able to accept spoken input

* R;: The system should be able to store the given input in
text format on a local disk

" R ={R;, Ry, R}/

System

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 7

Software Design Process — i)
PrOblem SOlVing approach University of Twente

L S
o Example PDA Input and Storage System

= The solutions for these requirements

= S1={C1,C2,R1}, 82 = {C3,C4,R2,R3}, 83 = {C5} where:
* C1: Abstract I/0O Reader class
e C2: Keyboard Reader Class
e R1: Inheritance relation between C1 and C2
* (3: Audio Recorder class
* (C4: Voice Recognizer class.
e R2: Inheritance relation between C1 and C3
* R3: Aggregation relation between C4 and C3

o (5: File writer class.

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 8

"~ Software Design Process — @
Problem Solving approach University of Twente
Design of PDA Input & Storage System

FileWriter PDA_IO_Reader VoiceRecognizer
+witeByte() +readByte(): byte -Events: Mip
+wite(witeArr:byte[]): int +read(readArr:byte[]): int +recogni zer Loop()
+wite(witeArr:byte[],fromint,to:int): int +read(readArr:byte[],fromint,to:int): int +regi st er Event (e: Event)
+Fi |l eWiter(Nane:string) -get SoundData(): byte[]

KeyboardReader AudioReader
+readByte(): byte -soundSyst enReady: bool
+read(readArr:byte[]): int +readByte(): byte) <
+read(readArr:byte[],fromint,to:int): int +read(readArr:byte[]): int

+read(readArr:byte[],fromint,to:int): int
-ini t SoundSyst en()

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 9

Software Design Process — i)
PrOblem SOlVing approach University of Twente
Evolution

o Evolution causes the requirements of the
system to change

o Requirement changes causes the solutions of
the software system to change
o Three types of changes:
= Integration: SSystem -> SSystem L {Shew s
= Removal: §§

ystem -~ SSystem - {SOZd}
= Moditication: SSystem (SSystem - {SOld}) N {SNew}

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 10

i -
ﬂ; Uni it kaJt
g Approaches to Software Evolution™ "2

o Requirement changes affect the solutions

a Destructive Approach: Due to changes at S .,
the combine operation 1s restarted

= The 1nteractions between components are re-
1dentified
o Constructive approach: Find the context of the
evolution problem, find the mechanism(s) that
allow extensions for this context and apply the
changes without breaking about the System

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 11

=~ 4 ff' ﬂ; Approaches to Software Evolution

Constructive Approach

University of Twente

o Works without breaking up the System to its solutions
a NewSystem = (§+, §-) U System

oS+ : Set of solutions to be added to the system
aS- : Set of solutions to be removed from the system

o For the types of changes:
oIntegration: NewSystem = ({Sy.,,}, {}) U System
«Removal: NewSystem = ({}, {Sy;,}) U System
«Modification: NewSystem = ({Sy...}, {Spiit) U System

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 12

&)

University of Twente

: L ="‘ : Approaches to Software Evolution
A Example

o Example PDA Input & Storage
o R4 — The system should support encrypted file writing
o Solution to R4 — EncryptedFile class

o Destructive approach: add a new class and force the
client to use different classes (possibly also different
interface) for write operations

o Constructive Approach:

a NewSystem = ({EncryptedFile}, {}) L1 System

a Find the properties of the evolution problem (the context),
then for the context find the mechanisms

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 13

&)

1 Approaches to Software Evolution . .. ¢~
Constructive Approach — How to Apply

Solution

Find |—» Contexts

System ¢ Search

Evolution Mechanisms

Constraints d Select

Evolution Mechanism

Apply

Y

New System

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 14

’ ; 3 o ° ‘
;éCenstructlve Approach Appliedto i)
: Integl‘ation Pl‘Oblem University of Twente

o To apply the constructive approach we need to
find the context of the evolution problem

= The context contains parameters that details the
evolution problem

= We can find the details of the problem by looking at

the relation and properties of Sy, and Sg e

» We 1dentified 3 parameters that detail the evolution
problem
e Characteristic of Sy (Sta)

» Relationship between S

New

and S (Rel)

New System

* Enviroment (Env)

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 15

% Cﬁnstructive Approach Appliedto &5
#°" Integration Problem - Contexts """

1. The status of Sy, (Sta)

1. Composition (C) — The change has occurred

New

2. Extension (Ex) — extend the system with scenarios
so that 1t can withstand anticipated changes

3. Exception — We cannot find a solution for the new
requirement

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 16

Py Cﬁnstructive Approach Appliedto &
#s” Integration Problem - Contexts ™"

2. The relationship between Sy, (Rel)
1. Non-overlapping (NO) - OS; OS_ ..,
S: N Syew= U
2. Overlapping (O) — 8, 0 S . »
S: N Syew” U

New

Specialization (S) — [8; O Sy e » S; 0 S

4. Interpertation (I) — (8, O Sy ..., S; [Syeyy

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 17

% > Censtructive Approach Appliedto &5
%" Integration Problem - Contexts "™

3. The Environmental Factors (Env)
1. Run-time adaptation (RA)
2. Compile-Time adaptation (CA)
3. Installation (In)

o The context of an evolution problem is a triple
{Char, Rel, Env}

o Char ranges over C, Ex
o Rel ranges over NO, O, S, 1
o Env ranges over RA, CA, In

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 18

s ﬂ‘-'COllStl‘llCthe Approach Applied to @
o edews® Integration Problem - Contexts

University of Twente

o There are 36 contexts for evolution problems

« Char takes 3 values, Rel takes 4 values, Env takes 3
values

o Not all possible combinations of the parameters
give a feasible context

 When Char=Ex, SNew doesn’t exist; we can’t find a
value for Rel parameter

= Thus we have 24 feasible contexts

o For each context, we listed applicable
mechanisms from SE literature

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 19

e Constructive Approach Applied to i)
e ® " Integration Problem -Example

University of Twente

- Example PDA Input & Storage
o R4 — The system should support encrypted file writing
o Solution to R4 (S

o The context of this evolution problem:

)— EncryptedFile class

New

o Char = C since the change has occurred

2 Rel = NO since S
solution in S

New doesn’t intersect with the any

system
o Env = Assume we want to achieve this composition
with compile time techniques (CA)

. {C,NO,CA}

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 20

v #Constructive Approach Applied to i)
* Integration Problem -Example

University of Twente

o {C,NO,CA} — The mechanisms are polymorphic calls,
decorator pattern,

oThe System 1s evolved using decorator pattern

FileWriter FileWriteOperation
+writeByte() +writeByte()
+write(witeArr:byte[]): int twite(witeArr:byte[]): int
+wite(witeArr:byte[],fromint,to:int): int +wite(witeArr:byte[],fromint,torint): int
+Fi | eWiter(Nane:string) +Fi | eWiter(Nane:string)
StandardFileWriter EncryptedFileWriter
+file: FileWiter #AFi leWiteOperation: FileWiteOperation
+writeByte() +writeByte()
+wite(witeArr:byte[]): int +wite(witeArr:byte[]): int
+write(witeArr:byte[],fromint,to:int): int +write(witeArr:byte[],fromint,to:int): int
+St andar dFi | eW it er (Nane: string) +set Key(key: byte[])

i

SharedKeyEncrpytedFileWriter

+writeByte()

+write(witeArr:byte[]): int
twrite(witeArr:byte[],fromint,to:int): int
+set Key(key: byte[])

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 21

g oF° ﬂ;"Concluswn And Future Work ..., . A2.

o Constructive Approach to Software Evolution
allows the system to evolved without changing
the initial design

» Knowledge about the design stays the same
= No design drift

a Future work

= Mechanisms for removal and modification

© 2007 {s.ciraci}@ewi.utwente.nl MoDSE 2007 in Amsterdam — 20" March Sheet 22

