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Abstract— In many software design and evaluation techniques,
either the software evolution problem is not systematically
elaborated, or only the impact of evolution is considered. Thus,
most of the time software is changed by editing the components
of the software system, i.e. breaking down the software system.
The software engineering discipline provides many mechanisms
that allow evolution without breaking down the system; how-
ever, the contexts where these mechanisms are applicable are
not taken into account. Furthermore, the software design and
evaluation techniques do not support identifying these contexts.
In this paper, we provide a taxonomy of software evolution that
can be used to identify the context of the evolution problem.
The identified contexts are used to retrieve, from the software
engineering discipline, the mechanisms, which can evolve the
software software without breaking it down. To build such a
taxonomy, we build a model for software evolution and use this
model to identify the factors that effect the selection of software
evolution mechanisms.

Keywords: Software Evolution, Software Architecture Syn-
thesis, Software Evolution Taxonomy, Software Evolution
Framework.

I. INTRODUCTION

Due to demand from users and changes in environment and
organization [1] software systems need to evolve. Due to this,
the initial requirements of the system are changed. One type
of change is the addition of new requirements to the system.
Thus, software evolution for such changes involves finding
solutions for these new set of requirements and integrating
them into the system without effecting the quality of the
system. We call this the integration problem.

In the literature, as we detail in section II, the evolution
problem is not systematically worked out in problem solving
based techniques (e.g. Synbad [2]) or only the impact of
the changes is calculated using scenario-based techniques [3].
That is, the mechanisms that can ease software evolution are
not considered. For example, for a given change scenario,
the context of this change can be identified and the most
applicable techniques that reduce the impact of change can
be selected. However, these steps are not included in any
evaluation technique. Obviously, there are many mechanisms
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in the software engineering domain that can be used to
evolve software. Even the inheritance mechanisms provided
by object-oriented languages can be used to cope with some
evolution requests. However, the contexts where these mech-
anisms are most applicable is not identified. So, there is a
gap between the software design and analysis techniques and
solution mechanisms (such as styles and patterns). To close
this gap, we need a mapping mechanism in which the contexts
of the evolution problem in consideration are identified and
these contexts are used to find the set of mechanisms that are
applicable.

In this paper, our aim is to provide such a mapping between
software design/analysis techniques and design patterns/styles
(which we call mechanisms) for the integration problem. We
propose to add steps to the design process, in which:

1) After solutions to the initial requirements are found,
the solutions that are expected to change are identified
(using evaluation techniques like scenarios), the contexts
of these evolution problems are found and these solu-
tions are extended with the mechanisms that provide an
extensible interface to this evolution problem.

2) The solutions to changed requirements are found, the
contexts of these evolution problems are identified and
using these contexts the mechanisms that allow compo-
sition of old solutions with the new ones are extracted.

To achieve this aim, we first identify the types of changes
that occur in requirements due to evolution and formulate
the constructive model based on these changes. Then we
focus on integration problem and we use the constructive
model to identify the contexts of these problems. In other
words, we identify the factors that affect the selection of
the mechanisms from software engineering domain. Then, we
provide a framework of solutions that are applicable to each
context.

This paper is organized as follows: In the next section we
provide an overview of software design and architecture eval-
uation techniques and identify their problems with respect to
software evolution. The software evolution model is described
in section III. We present the taxonomy of software evolution
in section IV. For all identified contexts, we list mechanisms
that can be used to cope with evolution in section V. We



conclude and provide the future work in section VII.

II. SOFTWARE EVOLUTION IN SOFTWARE DESIGN AND
SOFTWARE EVALUATION TECHNIQUES

In this section, we describe what we mean by the gap
between software design/evaluation techniques and design
patterns/styles. We consider the most well-known design and
evaluation techniques and describe how identifying the context
of the evolution problem helps in the choice of the software
evolution mechanisms.

A. The Unified Process

The Unified Process [4] is a use-case driven, iterative and
architecture centric software design process. The life of a
system is composed of cycles and each cycle concludes with a
product. Each cycle is divided into four phases. The first phase
is the inception phase and in this phase the requirements are
analyzed and a general vision about the product is developed.
This phase is followed by the elaboration phase in which the
architectural baseline of the product is developed. During the
third phase the product is built and this phase is labelled
as construction. The last step, called transition, involves the
manufacturing of the product.

To support evolution in Unified Process, there must be link
between the transition phase of the previous cycle and the
inception and elaboration phases of the current cycle. With
this link, the designer, while gaining a perspective about the
old system, can also develop ideas about integrating new
requirements to the system. That is, with this link the designer
can identify the evolution problem he is faced with, select
the suitable evolution technique and then apply this technique
to the design. For example, if the new requirements extend
the current system, the designer can choose to delegate the
current system with new requirements. Thus, the new system
can be designed using means of delegation mechanisms like
call forward protocols.

B. Software Architecture Synthesis Process

The Software Architecture and Synthesis process (Syn-
bad) [2] is an analysis and a synthesis process, which is a
widely used process in problem solving in many different
engineering disciplines. The process includes explicit steps
that involve searching solutions for technical problems in so-
lution domains. These domains contain solutions to previously
solved, well established, similar problems. Selection of which
solution to use from the solution domain is done by evaluating
each solution according to quality criteria.

The method consists of two parts, which are solution
definition and solution control. The solution definition part
involves identification and definition of solutions. In this
part client requirements are first translated into a technical
problems; these are the problems that are actually going to
be solved. These technical problems are then prioritized and a
technical problem is selected according to this priority order.
The solution process involves identifying the solution domain
for the problem and searching possible solution abstractions in

this domain. Selected solution abstractions are, then, extracted
from the solution domain and specified to solve the problem in
consideration. In the last step of the solution definition part, the
specified solutions are composed to form the architectural de-
scription of the software. The solution abstractions may cause
new problems to be found; thus there is a relation, labeled as
’discover’, between solution abstraction and technical problem.

The solution control part of Synbad represents the evalu-
ation of the solutions. The evaluation conditions (e.g. con-
straints on applying the solution) are provided by the sub-
problem and by the solution domain. The solutions extracted
from solution domains are expressed as formal models for
evaluation. Then optimizations are applied to the formal model
in order to meet the constraints and the quality criteria. The
output of these optimizations is then used to refine the solution.

Synbad treats each problem separately and the solutions of
each problem are composed to form the solution of the overall
problem the software is going to solve. Thus, this process
inherently supports the addition of new requirements to evolve
the software. When new requirements arrive, their technical
problems are analyzed and the solution abstractions for these
technical problems are extracted from the solution domain.
Each extracted solution abstraction causes a new technical
problem to be identified, which can be stated as ”given a
solution, what are the techniques to compose this solution to
the system”. For this problem, the solution abstraction and
the system define the quality criteria and constraints. Here,
the quality criteria are the non-functional requirements of the
system. The constraints, on the other hand, are the factors
that affect the selection of the composition mechanisms. For
example, if the extracted solution is already implemented and
its source code can not be changed, then the composition
mechanism should be a run-time solution. In this paper, we
provide a taxonomy that lists all these constraints. Thus, the
software engineer can identify the evolution problem he is
faced with and search for the mechanisms accordingly.

C. Scenario-based Evaluation Techniques

There are many scenario-based techniques that evaluate
software architectures with respect to certain quality at-
tributes [3]. Scenario-based Architecture Analysis Method
(SAAM), for example, is a method for understanding the
properties of a system’s architecture other then its functional
requirements [5]. The inputs to SAAM are the requirements,
the problem description and the architecture description of
a system. The first step of SAAM is scenario creation and
software architecture description. During this, all stakeholders
of the system must be present; scenarios are considered to
be complete when a new scenario doesn’t affect the architec-
ture. In the last step, scenarios are evaluated by determining
the components and component connections that need to be
modified in order to fulfill the scenario. Then the cost of
modifications for each scenario is estimated in order to give
an overall cost estimate.

In recent years, SAAM has been specialized to focus on a
quality attribute like modifiability [6] and extended to find the



trade-off between several quality attributes [7]. These methods
can easily be used or adapted to find the impact of evolution
requests. Though, after finding the impact, software engineers
are faced with the problem of finding the mechanisms that are
applicable to the evolution problem in consideration. When
with scenarios certain components are found to be hard to
evolve, how can the software engineer make them easier to
evolve? For this, the evolution problem should be analyzed in
detail; the constraints of the software system and the evolution
mechanisms should be identified and the most applicable
mechanisms should be used to replace/change the compo-
nents. That is, the context of the software evolution should
be identified in order to select the applicable mechanisms.
Currently, none of the evaluation techniques has steps that
include such analysis. In this paper, we identify the contexts
of evolution problems and mechanisms. Thus, after finding the
impact, the software engineer can find the applicable evolution
mechanisms by selecting the context of the problem he is
dealing with. Furthermore, in this paper, we also list some
mechanisms that can work in the identified contexts.

D. Design Pattern and Styles

In the software engineering domain there are many mech-
anisms that can cope with various evolution problems. Some
design patterns, for example, make it is easier to add new
behavior to the system. In their study of comparing design
patterns to simpler solution for maintenance, Prechelt et al. [8]
concludes that due to new requirements design patterns should
be used, unless there is an important reason to choose the
simpler solution, because of the flexibility they provide. Mens
and Eden [9] list some of these evolution mechanisms and
determine how helpful they are for some evolution situations.
Their analysis shows that these mechanisms are very costly to
use for certain evolution problems while for others they are
not. This shows that there are contexts for these techniques.
Thus, identifying these contexts and then selecting the mech-
anism to use may greatly ease the procedure for the evolution
of software.

The problem here is that these contexts are not analyzed.
We know that design patterns and styles can ease evolution
operations but what the applicable mechanisms are for a given
evolution problem is not known.

III. THE MODEL OF THE CONSTRUCTIVE APPROACH TO
SOFTWARE EVOLUTION

In this section, we formulate the technical problem and a
model for software evolution. There are many studies that try
to capture the scope of evolution. For example, Bennett and
Rajlich [10] state that software evolution occurs only after the
initial software system is developed. We consider evolution as
a procedure for adding the set of changed requirements to the
software system. Thus, evolution does not only occur after the
initial system is developed, since user requirements may also
change during the development of the initial system.

A software system starts its life cycle with a set of client
requirement specifications denoted by RSystem. By using
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Fig. 1. The Software Design Process

some design process, the solutions for these requirements are
found as presented in Figure 1. Here, a solution is a set whose
elements are software components, such as classes, methods,
attributes, relationship between classes, and implementations
of methods (e.g. a set with two classes and an inheritance
relation between them), and is denoted by S. The elements of
a solution set depend on the design process used. For example,
if Unified Process [4] is used as the design process then the
solutions are classes and interactions between classes. These
solution sets are the elements of the set of solutions to the
system SSystem.

In order to find a solution for the overall problem that soft-
ware system is going the solve, the solutions in SSystem should
be combined; that is the interactions between the solutions
should be identified. Thus, we introduce the Combine opera-
tor which refers to the process of composing the solutions:

System = Combine(SSystem)

Evolution causes changes in the requirements; that is the
elements of the set RSystem are changed. Using this, we
identify three types of changes:
• Integration: Refers to the type of change where the

solution, SNew, of a new requirement is to be added to
system. SSystem ⇒ SSystem

⋃{SNew}.
• Removal: Refers to change where a requirement is re-

moved from RSystem, thus the solution corresponding
to this requirement is also to be from the system.
SSystem ⇒ SSystem − {SOld}.

• Modification: This type captures the changes where a re-
quirement in the set R is modified. Thus, the old solution,
SOld, of this requirement is replaced by, SNew, the new
solution. SSystem ⇒ (SSystem − {SOld})

⋃{SNew}
As shown above, the changes in the requirements causes

changes in the solutions of the system. Thus, to achieve
the new system the combine operation is restarted with this
changed solution set. This is the destructive approach to
software evolution. Without considering the applicable evolu-
tion mechanisms during the design phase, the results of the
old combine operation are broken down and the operation
is restarted with changed SSystem. A better approach is to



find mechanisms that allow composition of changed solutions
(contained in S+ and S−) to the system without breaking down
the system. We model this approach as:

NewSystem = (S+, S−)
⊕

System

In the above definition, the set S+ contains the solution to
be added and S− contains the solution to be removed from
the system; System is the system that has already been built,
NewSystem denotes the system that is to be achieved. The⊕

operator defines the process of finding the context of the
evolution problem and then the applicable mechanisms, which
allow evolution without breaking down the system, at that
context. The mechanisms to be used greatly depends on the
type of change; thus for the identified three types, we define
the constructive approach as:
• Integration: ({SNew}, {})

⊕
System

• Removal: ({}, {SOld})
⊕

System
• Modification ({SNew}, {SOld})

⊕
System

In this paper, we focus on the integration and list the mech-
anisms that allow a constructive approach for this type of
change.

In many cases, the software engineers want to design their
initial systems so that they can handle some evolution requests.
To identify the components that are going to be effected
by evolution often scenarios are used. In our model, these
scenarios can be used as future requirements and then the
software engineer can identify the components that are going
to be affected by evolution. Then, using the taxonomy we
present in this paper, the software engineer can identify the
context of the evolution problem, find applicable solutions to
this problem and extend the system with these solutions.

To clarify this model for evolution, we examine the PDA
input and storage system example given by Noppen, Van den
Broek and Aksit [11]. The requirements of this system are:
• R1: The system should be able to accept textual input

from the user.
• R2: The system should be able to accept spoken input
• R3: The system should be able to store the given input

in text format on a local disk.
Thus Rsystem = {R1, R2, R3}. For this example, we use

Unified Process as our design procedure and we find the fol-
lowing solutions: S1 = {C1, C2, R1}, S2 = {C3, C4, R2, R3},
S3 = {C5} where (C stands for Component):
• C1: Abstract I/O Reader class
• C2: Keyboard Reader Class
• R1: Inheritance relation between C1 and C2

• C3: Audio Recorder class
• C4: Voice Recognizer class.
• R2: Inheritance relation between C1 and C3

• R3: Aggregation relation between C4 and C3

• C5: File writer class.
The overall solution to the PDA Input and Storage System

is:

System = Combine({S1, S2, S3})

Assume that after the initial release, the users of the system
demanded that system should be able support encrypted file
writing. We solve this requirement by introducing the class
EncryptedFileWriter. So we have:

NewSystem = ({EncryptedF ileWriter}, {})
⊕

System

Thus we need a mechanism to compose this class with the old
system and we show how our taxonomy supports finding this
mechanism in the remaining sections of the paper.

IV. TAXONOMY OF SOFTWARE EVOLUTION

The software engineering domain contains many mecha-
nisms to the problem of evolution. Obviously, every mech-
anism has a context where it is applicable. Thus, we need to
identify the contexts of the evolution problems and then try to
the find the mechanisms; in other words, we need to build a
taxonomy of software evolution.

In Section III, we defined the
⊕

operator in which the
context of the evolution problem is identified. For the inte-
gration evolution problem, this operator works by finding the
contexts for the solution S (we refer to S+ as S in the reminder
of the paper) and extracting the mechanisms applicable for
these contexts. So, to find the context of the evolution we
need to categorize the relationship between S and SSystem.
We identify three parameters that categorize this relationship.
The first parameter (CHAR) defines the characteristic of the
solution S; it ranges over {E,C,Ex}, where:
• Extension(E): The demands (e.g. marketing) can show

the near future expected changes. Thus, we can extend
the system so that when these changes happen, they can
be easily added to the system. The solutions that are going
to be changed or added to the system are identified by
means of scenarios. The new solution set, S, contains
software components that are affected by the scenario.

• Composition (C): The changes have happened and the
solutions for the new requirement are found. Thus,
NewSystem is defined by composing System and S.
For this value the new solution set, S, contains software
components that solve the new requirement and the soft-
ware components that are affected by this requirement.

• Exception (Ex): No solution to the new requirement can
be found. Thus, S does not exist.

The second parameter, denoted by REL, specifies the rela-
tionship between the system and the solution in consideration,
which is the intersection of the sets SSystem and S. To identify
this relationship, the solutions to the new requirement should
exist. This parameter takes values from {NO, O, S, I}, where:
• Non-overlapping(NO): S and all of the solutions in

SSystem do not share software components; that is ∀Sj ∈
SSystem, Sj ∩ S = ∅. With the destructive approach,
since there is no intersection between solutions, the S
is added to the system by the Combine operation. In the
constructive approach, on the other hand, the System is
not broken down to its solutions, so the contexts where
REL = NO should include mechanisms that bind the
new solution to the system.



• Overlapping(O): In this case, S and at least one solution
in SSystem share software components. For example, the
addition of the new solution, S, to the system may cause
some parts of the old solutions to be replaced by the
new ones. This case can be presented with our model
as: ∃Sj ∈ SSystem, Sj ∩ S 6= ∅. For these extensions,
substitution techniques in which the solution, S, replaces
or parts of it replace a solution in SSystem can be used.
This case has two special cases:

– Specialization (S): The new solution extend the sys-
tem; that is ∃Sj ∈ SSystem, Sj ⊂ S. The obvious
solution to this evolution problem is building a
delegation mechanism.

– Interpretation (meta-layers)(I): In this case, the new
solutions lessen the system; ∃Sj ∈ SSystem, Sj ⊃ S.
Thus, the new solution can be viewed as a layer on
top of the system (like layered-architecture pattern).

The third parameter (ENV) shows how the
⊕

operator
can be achieved and contains environmental factors like the
programming language and run-time environment used. We
consider these factors because they play an important role
in the decision for the technique to be used to evolve the
software. For example, if

⊕
can easily be achieved using

run-time techniques then these techniques should be used in
evolving the system. This parameter takes values from {RA,
CA, In}, where:

• Run-time adaptation (RA): The system provides mecha-
nisms to support the

⊕
operator, which can be applied at

run-time. For example, the system may be programmed
with a language that also provides a run-time environment
(e.g. a virtual machine). Then the run-time tools provided
by the environment can be used to evolve the system.

• Compile-time adaptation (CA): The programming lan-
guage used has mechanisms that support the

⊕
operator,

such as inheritance and polymorphic calls.
• Installation (In): The addition of new solution to the

system is achieved by means of a scripting program,
which is used for configuring the system.

We define a context of an evolution problem to be a triple
(CHAR,REL,ENV), where CHAR ranges over {E,C, EX}, REL
ranges over {NO,O,S,I} and ENV ranges over {RA,CA,In}.
Thus, there are 36 contexts for evolution problems. For ex-
ample, the triple (E,S, CA) denotes the evolution problem
in which we want to extend our system using compile-
time adaptation techniques to handle evolution requests that
specialize the system. Obviously, not all combinations result
in a feasible context for an evolution problem. When for a
new or changed requirement no solution is found the S does
not exist and because of this, we cannot find the intersection
of S with the SSystem. Thus, the contexts (Ex, x, y), where
x means any value for REL and y means any value for ENV,
are infeasible and there are 24 feasible contexts for evolution
problems.

In the PDA input and storage example given in section III,
we solved the requirement of supporting encrypted file op-

Contexts

System

Find

Evolution Mechanisms

Search

Apply

New System

Evolution Mechanism

SelectConstraints

Solution

Fig. 2. The function diagram of applying the taxonomy. The arrows are the
functions and the boxes are the inputs to these functions

erations by introducing the class EncryptedFileWriter. To
combine this class with the system, we need to find the
the contexts of this evolution problem. The CHAR parameter
should be C (composition) because S is not empty. The
intersection of S and the solutions of the system is an empty
set, so REL is NO (non-overlapping). We can achieve this
composition using compile-time adaptation since we used an
object-oriented language. However, if the system that employs
our storage provides run-time adaptation or installation tech-
niques, then we can also achieve this composition using run-
time adaptation. As a result, we have three contexts for this
evolution problem; {C,NO,CA}, {C,NO,In} and {C,NO,RA}.

A. Using the Taxonomy

The steps of applying the taxonomy are: solving the new
requirement using some design process, identifying the con-
texts of the evolution problem for the new solution, S, and
the system, and then finding the applicable mechanisms these
contexts from the list provided in section V.

In Figure 2, we present the functional model for applying
the taxonomy. In this figure, the boxes are sets and the con-
nectors are the functions. The starting points of the connectors
are the inputs of the function and the end point (the points
marked with arrow heads) is the output. The function Find
refers to the activity of finding the triple context for the
evolution problem faced. The sets System (referring to the
set SSystem) and Solution (S) is required to find the context
of the evolution problem. With the Solution the characteristic
parameter is identified. The System is required to identify the
environment constraints. Both sets are required to identify the
relation parameter. When scenarios are being used to extend
the system, the impact of the scenarios is used to identify the
relationship between the System and Solutions. For example,
the scenarios may show that a method of a class requires
changing, which means the new solutions are overlapping with
the system. As discussed in section III, in order to identify
this parameter, we need to find the intersection of the solution
and the SSystem. This greatly depends on the components
contained in the solution sets. The output of the Find function



is the set Contexts whose elements are one or more contexts
listed in section IV. The function Search involves extracting
the applicable Evolution mechanisms from the list provided
in section V. Obviously, not all of the applicable mechanisms
can be applied to evolve the system. The system may have
some constraints (e.g. memory usage) which may prevent
the designer from using some of these mechanisms. The
function Select refers to the activity of selecting the most
applicable evolution mechanism. To select this mechanism, the
set Constraints is required, which includes the constraints or
limitations of the system. After selecting the most applicable
mechanism, it is applied to the System which evolves the
system to New System. This procedure is repeated until all
new requirements are added to the system.

V. SOFTWARE EVOLUTION TECHNIQUES

In this section, we list the mechanisms, extracted from the
software engineering domain, that can be used to address
the evolution problems within the 24 contexts given in the
previous section.
• {C,NO,CA}: In this context S (the new solution) and

old solutions do not intersect and we want to combine
them by using compile time mechanisms. For this, we
can replace the object that receives the message using
polymorphic calls. Or we may want to add new behavior
to the existing classes using the observer, composite or
the decorator design pattern.

• {C,NO,RA}: In some situations, it may be cheaper to
use an already implemented solution rather than re-
implementing the solution. Furthermore, the source code
of the new solution may not be available, so a run-time
adaptation mechanism is required. For such cases, a glue
code, which is a dedicated program that replaces or binds
the interfaces or modules, can be used.

• {E,NO,CA}: Scenario-based analysis may show that so-
lutions that do not overlap with the current system are
going to be added to the system in the future. The
mediator pattern provides a class, the mediator, that is
the combination point of the other classes. For evolution,
the system can be designed using the mediator pattern so
that new non-overlapping solutions can be bound to the
system by just modifying the mediator.

• {E,NO,RA}: We may want to be able to add non-
overlapping solutions to system at run-time. For this, the
system can be designed with hook methods (methods
without implementations) and the new solutions can
implement this hook methods. The best example of this
can be found in the plug-in support of web browsers.
The main functionality of these browsers is to parse and
display web pages. Though, with plug-ins new solutions
(e.g. movie player) that extend this functionality can be
added to the browsers.

• {C,S,CA}: In this context, the new solution specialize a
solution in the system and we would like to compose it
with the system by compile time adaptation. The inheri-
tance mechanism supported by object-oriented languages

can be used in this context because it supplies transitive
reuse. The new solution can inherit existing solutions and
add the extra functionality by overriding their methods.
We can also compose the new solutions by building
a delegation mechanism using the command pattern.
The concrete command receivers may aggregate existing
solutions or new solutions and the switcher can aggregate
these concrete command receivers. The decorator pattern
can also be used to extend the functionality of the existing
objects.

• {C,S,RA}: If the run-time environment supports editing
meta-level dispatcher (e.g. Smalltalk [12] run-time en-
vironment) then the solutions that specialize the system
can added to the system by modifying this dispatcher. For
example, one may want to add new functionality on top
of the old functionality to the methods of a class. The
”extended” methods that has this new functionality can
be implemented in another class and the dispatcher can
be modified so that calls are forwarded to this class.

• {E,S,CA}: Analysis may show that in the near future,
the functionality of the existing solutions is going to be
extended. To ease these future operations, the software
engineers can build a call forwarding mechanism by using
the bridge or strategy pattern. To use the bridge pattern,
for example, the functionality that is going to be extended
can be placed in classes that extend the implementor and
the users of this functionality should be placed in classes
that extend the abstraction (refined abstractions). Then,
the client can pass an instance of the functionality (a
concrete implementor) to these classes. New functionality
can be added by adding a class that extends the imple-
mentor and implements the new functionality. Then the
client code is also changed so that it passes the refined
abstractions to this new class.

• {E,S,RA}: In this context, we want to extend the ini-
tial system because we want to be able to specialize
the system at run-time. The run-time environments that
support this operation may not be suitable for our system;
thus we must design our own run-time environment. To
only support specialization at run-time, we only need to
design a modifiable dispatcher. However, an interpreter
that interprets the system can also be designed.

• {C,O,CA}: In some cases, the new solution may require
some parts of the system to be changed. For example,
the implementation or the interface of a method in the
system may be changed. Such changes can be achieved
either by reprogramming those parts or using inheritance
to override the parts that need to be changed. The adapter
pattern can be used to overcome impacts of interface
changes. On an interface change, some parts of the system
may still require to access the changed components
through the old interface. Thus these parts can access
the new interface through the wrappers provided by the
adaptor. We can use the decorator pattern to replace the
behavior of the objects in the system.

• {C,O,RA}: Here, the new solution overlaps with the old



solutions and we want to replace them. The glue code
used for gluing non-overlapping solutions can also be
used to replace overlapping solutions.

• {E,O,CA}: Using the scenarios, the designers may fore-
see that in the near future the implementations of the
existing solutions are going change. For such cases, the
system can be designed to make use of the bridge pattern.
Thus the implementations to evolve the system can be
changed by just sub-classing the implementor interface.

• {E,O,RA}: As discussed earlier, it may be impossible to
stop and make the changes to some systems. To support
evolution, these systems are required to be designed in
an environment that allows components of the system to
be changed at run-time. For example, the Smalltalk [12]
object-oriented environment supplies both programming
and run-time environments. With this run-time environ-
ment it is possible to make modifications to classes. Thus,
to support evolution for these systems, the designer may
choose to use the Smalltalk environment to develop the
initial system.

• {C,I,CA}: In this context, the new solution reduces a
solution in the system and we want to combine it with
the system using compile time adaptation. The command
pattern used for specializing the system can also be
used to interpret the system; for example, the concrete
command implementors would call some of the functions
of the system.

• {C,I,RA}: If the run-time environment of the system
supports reflection then it can used to reduce the behavior
of a solution in the system. In this way, the new solution
can select the methods they are going to use.

• {E,I,CA}: The system can be designed so that the number
of its features can be reduced. The layered architectural
pattern, for example, can be used while designing the
system so that new solution can be placed on top of
the existing solutions. Application generators can also
be used for this context. Application Generators are
compilers that are specifically designed for a purpose
(domain specific) [13]. The input to the Application Gen-
erator is the program specification and the output is the
generated application. Thus, by reducing/changing these
specifications we can reduce the systems functionality.

• {E,I,RA}: In this context, we want to design the system
in a runtime environment that will allow us to reduce
the functionality of the solutions of the system. Thus, we
need a runtime environment that supports reflection or we
can design the system with reflective architectural pattern
to implement such a runtime environment.

• {E,NO,In}, {E,O,In}, {E,I,In}, {E,S,In}: It may be im-
possible for some systems to stop and to install the system
with new solutions. Thus, the software engineer needs to
design an environment for the initial system that supports
run-time adaptation. The software engineer can design an
interpreter or an installation program that configures the
modules and call patterns according to a configuration
script. So, new solutions can be bound or replaced with

the existing solutions.
• {C,NO,In}, {C,O,In}, {C,I,In}, {C,S,In}: In these con-

texts, we want to add the new solutions to the system or
replace existing solutions with the tools provided by the
installation system. To achieve this, we need to have an
installation system or an interpreter with a configuration
script. Thus, we can remove/add solutions to system by
changing this script.

For the PDA input and storage system example given in
Section III, the context of the evolution problem of adding
the encrypted file operations to the system is {C,NO,CA},
{C,NO,In} and {C,NO,RA} as shown in Section IV. Assume
that we want to use compile time mechanisms to evolve our
system. The destructive solution to this evolution problem is
to add the class EncryptedFileWriter to the system, which
forces the client to use a different interface for encrypted
write operations. Thus, components that are going to use
encrypted write operations are changed when the Combine
operations is restarted. Looking at the list provided above, we
can see that the mechanisms for this context are polymorphic
calls, decorator pattern or observer pattern. To show how the
design patterns can be used for this context, we apply the
decorator pattern to this evolution problem. In Figure 3, the
StandardFileWriter class is a simple wrapper that forwards
the calls to FileWriter class. The EncryptedFileWriter class
is the decorator and SharedKeyEncryptedFileWriter class is
the concrete class that implements the shared key encryption
operation.

Pros: With this mechanism, we are able to add the support
for shared-key encrypted file writing without decomposing
the system. Thus, the original design of the system is not
affected by the additions. The mechanism, also allowed us
to use the same write interface for encrypted file writing.
Additionally, support for other encryption mechanisms (e.g.
public-key encryption) can easily be added to the system by
just extending the EncryptedFileWrite class.

Cons: To add the encryption operation we had to introduce
3 classes, which has performance and memory draw-backs.

VI. RELATED WORK

There is a substantial body of work on understanding soft-
ware evolution and providing tools that can ease the software
evolving procedure. In this section we briefly summarize some
of the work that provides a taxonomy or tools for software
evolution.

With their analysis on evolving software, Lehman et al. [14]
constructed laws of software evolution. Subsequently, they
extend the laws with data collected from various evolving
software and listed tools which are direct implications of these
laws [15]. For example, as an implication of the conservation
of familiarity law, Lehman suggests collecting and modeling
growth data so that this model can later be used in estimating
the growth trend per release. We also provide tools to cope
with evolution; however, the tools we provide can be used
at design time and address the problem of integrating new
requirements to the system.



FileWriteOperation

+writeByte()

+write(writeArr:byte[]): int

+write(writeArr:byte[],from:int,to:int): int

+FileWriter(Name:string)

StandardFileWriter

+file: FileWriter

+writeByte()

+write(writeArr:byte[]): int

+write(writeArr:byte[],from:int,to:int): int

+StandardFileWriter(Name:string)

EncryptedFileWriter

#AFileWriteOperation: FileWriteOperation

+writeByte()

+write(writeArr:byte[]): int

+write(writeArr:byte[],from:int,to:int): int

+setKey(key:byte[])

SharedKeyEncrpytedFileWriter

+writeByte()

+write(writeArr:byte[]): int

+write(writeArr:byte[],from:int,to:int): int

+setKey(key:byte[])

FileWriter

+writeByte()

+write(writeArr:byte[]): int

+write(writeArr:byte[],from:int,to:int): int

+FileWriter(Name:string)

Fig. 3. The system after the addition shared key encrypted file operation using the decorator pattern.

Chapin et al. [16] provide a classification of types of
software evolution activities such as changing the source code
or the documentation. The focus of this taxonomy is different
from our taxonomy, since we identify the contexts of the
evolution problems and find well established methods that
allow constructive evolution of the software.

Perry [1] states that classifying software evolution activities
is limiting because the sources of evolution that affect the way
systems evolve is not considered. Following this argument,
Perry lists the domain, experience and process as the sources
of software evolution. We base our taxonomy on the fact that
a change in one of these sources has occurred or is expected
to occur. Thus, given an evolution problem, our taxonomy
can be used to find the mechanisms that are applicable to it.
Buckley et al. [17] provide a taxonomy for evolution that also
focuses on the factors that affect the mechanisms that can be
used to evolve the system. The main difference between their
taxonomy and ours is that we view evolution as an integration
of new requirements to the existing system and we use this
view to extract the factors.

Refactoring refers to the activity of changing the structure
of a program without affecting its external behavior [18]. The
aim of such changes is to increase the quality of software.
When applied correctly, for example, they can increase the
extensibility of the software [19]. Some of the mechanisms
we provide in this paper can also be considered as refactorings
since they increase the extensibility or modifiability qualities
of software without changing the behavior of the system.
Besides these, we also provide mechanisms, which can be
used easily to change the behavior of the software.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the software evolution problem
as an integration process in which new solutions are added to
the system and we listed the mechanisms that allow evolution

with out breaking down the software. To list these mecha-
nisms, we first identified the types of changes that may occur
in requirements. Then, we build a model for evolution, where
the solutions for the changed requirements were composed to
the existing system to give the new system, the system we want
to achieve. For integration, we concluded that three parameters
have an effect on the set of applicable evolution mechanisms,
which are the characteristic of the new solutions (CHAR), the
impact of the new solutions on the existing system (REL),
and the environment in which the existing system runs (ENV).
We presented the context of an evolution problem as a triple
(CHAR,REL,ENV). According to the values these parameters
get, we identified 36 contexts. We reduced the contexts by
doing feasibility analysis and in the end we identified 24
feasible context for evolution problems. We concluded our
discussion by providing some well established mechanisms
that are suitable for the identified contexts.

Applying constructive approach to software evolution re-
quires identifying the contents of solutions sets and finding
the intersection of these sets. In this paper, we showed general
idea of constructive approach; however, in order to apply the
approach we need the what is changing aspect of evolution,
which we call the perspective. The perspective, defines the
models that are elements of the solution sets. With the PDA
input and storage example (presented in Section III), we
introduced the Design perspective, thus the models used are
object-oriented software components. The perspective used
also has an effect on the evolution mechanisms. For the design
perspective, the changing aspect are components like classes,
thus we selected the mechanisms that allow flexibility at this
perspective. If we were to use implementation perspective
(which deals with implementation details of methods) then the
mechanisms used should support constructive evolution at this
level. In subsequent papers, we will detail different perspec-



tives, their models and the mechanisms for each perspective.
It is possible for an evolution problem to have more than

one context and, in turn, more than one solution. Thus, besides
identifying the context of the problems, the trade-off between
different evolution techniques should also be considered in
selecting a technique. For example, when performance is
considered an important quality of a system then certain
techniques may not be used to evolve the system. Noppen,
Van den Broek and Aksit [11] represent requirements as fuzzy
sets to overcome vague and conflicting information. In this
study, the requirements are associated with degrees like user
satisfaction. Using a design process the solutions to these
requirements are found and each solution is associated with a
cost. Then the trade-off between user satisfaction and cost is
analyzed. We are going to apply the fuzzy set representation to
alternatives between evolution mechanisms to show the trade-
off between these alternatives.

In this paper, we have build the taxonomy for only in-
tegration evolution problem. Though, due to evolution the
requirements can be modified or removed. For integration
problems, we have identified the contexts of evolution prob-
lems by looking at the relationship between the new solution
and the solutions of the software system. A similar approach
can also be used for modification and removal. First we
need to find the solutions to be modified or removed in the
system. Then, by looking at the interaction of these solutions
with the remaining solutions of the system we can categorize
their relationship. Here, the interactions are the intersection
of the solution sets; thus, we can say that the categories of
the changes for modification and removal is similar to the
categories for integration. Using our taxonomy as basis, we
will extend the list of mechanisms to cover modification and
removal.
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