

Model-Driven Software Evolution
A Research Agenda

Arie van Deursen (TUD)
Eelco Visser (TUD)

Jos Warmer (Ordina)

conventional software development

GPL
program

compile 'machine'
code

'model'
'design'

code

conventional software maintenance

GPL
program

understand

'machine'
code

'model'
'design'

compile

modify

abstractions encoded in program
maintenance at low level of abstraction

domain-specific languages
model-driven engineering

GPL
program

compile 'machine'
code

generateDSL
program
(model)

raise the level of abstraction to a technical or application domain
automatically generate implementation code from model

problem1: interaction

 multiple models / multiple dsls

generate software from combinations of domain-specific languages

 model/model interaction

consider models as components / modules
what is interface of a model? what is the scope of model elements

model encapsulation; separate compilation

customization of generated code

not all customizations can be realized in models
generated code may need to be adapted

modify

 customize 'from the outside'

customization should never require direct modification of generated code
customization code must modify/interact with generated code

what is the interface? avoid exposing generation scheme

model/code interaction

customization code should be considered as part of the generator input
should interact with (interface of) models, not with generated code

embedded domain-specific languages

GPL
program

compile 'machine'
code

assimilateDSL
program
(model)

DSL
progEDSL

DSL
program
(model)

DSL
prog

MetaBorg (OOPSLA'04)
DSLs for abstraction over libraries/frameworks

fine-grained interaction with 'host' code
language conglomerates mix DSL and GPL code

problem 2: evolution

dimensions of evolution

GPL
program

understand

'machine'
code

'model'
'design'

compile

modify

traditional evolution is one-dimensional
(only one artifact (gpl code) to maintain)

regular evolution

DSL
program
(model)

DSL
prog

DSL
program
(model)

DSL
progmodify

regular evolution: adapt software to new requirements
implementation simply regenerated after modification of models

meta-model evolution

DSL
program
(model)

DSL
prog

evolve

language (syntax and/or transformations) evolve

model migration

DSL
program
(model)

DSL
prog

DSL
program
(model)

DSL
prog

evolve

migrate

language evolution requires migration of models

platform evolution

DSL
program
(model)

DSL
prog

DSL
program
(model)

DSL
prog

evolve

changes in the platform requires evolution of transformations
maintain generators for multiple platforms

evolve

model extraction

DSL
program
(model)

DSL
prog

DSL
program
(model)

DSL
prog

derive models from (legacy) GPL programs

abstract

abstraction evolution

DSL
program
(model)

DSL
prog

develop higher-level abstractions

DSL
program
(model)

DSL
prog

ab
st

ra
ct

themes for a research agenda
● technology

– model development environment
● generation

– from model to code
● evolution

– from code to model
● evaluation

– how

model development environment
● connecting technological spaces

– modelware (uml), grammarware (sdf), xmlware, ...
– grammars for language combinations

● unifying model and code transformation
– model extraction from code
– code generation

● language definitions in development env.
– making a new dsl should be as easy as making a new

class

generation – from model to code
● modeling business logic

– scope and expressivity of DSLs
– balance between generality and dom. specificity

● model interaction
– separation of concerns -> dependencies
– modularity: encapsulation, interfaces
– how to refer to elements in other languages?

● model composition
– composition of whole systems from models

evolution – from code to model
● incremental model introduction

– migrate part of legacy code base to models
– models and code co-exist

● model reconstruction
– harvest models from existing (legacy) code
– agnostic: search for recurring patterns
– reconstruct models for known DSLs

● model-based testing
– validation of migration to models

evaluation
● risk/benefit analysis

– return on investment: when does effort of dsl design
and implementation pay off?

– goal of MDE is to lower the treshhold
– factors for success and counter indicators

● methodological embedding
– decision making process for adopting MDE
– guidelines based on case studies and literature

our contribution
● funding for several research projects

– model-driven software evolution (MoDSE)
● 2 phd students, 2 postdocs (we are still hiring!)
● NWO/JACQUARD program (software engineering)

– transformations for abstractions (TFA)
● 1 postdoc
● how to deal with combinations of languages

– single page computer interaction (SPCI)
● 1 phd student
● reverse engineering & modeling rich user interfaces

● in collaboration with industrial partners

